Superelectrophilic activation of 5-hydroxymethylfurfural and 2,5-diformylfuran: organic synthesis based on biomass-derived products

Dmitry S. Ryabukhin, Dmitry N. Zakusilo, Mikhail O. Kompanets, Anton A.Tarakanov, Irina A. Boyarskaya, Tatiana O. Artamonova, Mikhail A. Khohodorkovskiy, Iosyp O. Opeida and Aleksander V. Vasilyev
Beilstein J. Org. Chem. 2016, 12, 2125–2135. https://doi.org/10.3762/bjoc.12.202

Supporting Information

Supporting Information File 1: Experimental procedures, characterization of compounds, 1H, 13C, 19F NMR spectra, and data on DFT calculations.
Format: PDF Size: 4.4 MB Download

Cite the Following Article

Superelectrophilic activation of 5-hydroxymethylfurfural and 2,5-diformylfuran: organic synthesis based on biomass-derived products
Dmitry S. Ryabukhin, Dmitry N. Zakusilo, Mikhail O. Kompanets, Anton A.Tarakanov, Irina A. Boyarskaya, Tatiana O. Artamonova, Mikhail A. Khohodorkovskiy, Iosyp O. Opeida and Aleksander V. Vasilyev
Beilstein J. Org. Chem. 2016, 12, 2125–2135. https://doi.org/10.3762/bjoc.12.202

How to Cite

Ryabukhin, D. S.; Zakusilo, D. N.; Kompanets, M. O.; A.Tarakanov, A.; Boyarskaya, I. A.; Artamonova, T. O.; Khohodorkovskiy, M. A.; Opeida, I. O.; Vasilyev, A. V. Beilstein J. Org. Chem. 2016, 12, 2125–2135. doi:10.3762/bjoc.12.202

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 178.4 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kolykhalov, D. A.; Golysheva, A. N.; Erokhin, K. S.; Karlinskii, B. Y.; Ananikov, V. P. The Stability Challenge of Furanic Platform Chemicals in Acidic and Basic Conditions. ChemSusChem 2024, e202401849. doi:10.1002/cssc.202401849
  • Yadav, A. K.; Bhat, N. S.; Kaushik, S.; Seikh, A. H.; Dutta, S. Efficient preparation of hybrid biofuels from biomass-derived 5-(acetoxymethyl)furfural and petroleum-derived aromatic hydrocarbons. RSC advances 2024, 14, 3096–3103. doi:10.1039/d3ra08505h
  • Kalyaev, M. V.; Ryabukhin, D. S.; Ivanov, A. Y.; Boyarskaya, I. A.; Borovkova, K. E.; Nikiforova, L. R.; Salmova, J. V.; Taraskin, A. O.; Puzyk, A. M.; Vasilyev, A. V. Hydroarylation of carbon–carbon double bond of furanic conjugated enones by arenes under superelectrophilic activation: synthesis and evaluation of antimicrobial activity of novel furan derivatives. Chemistry of Heterocyclic Compounds 2023, 59, 646–656. doi:10.1007/s10593-023-03250-7
  • Kalyaev, M. V.; Ryabukhin, D. S.; Borisova, M. A.; Ivanov, A. Y.; Boyarskaya, I. A.; Borovkova, K. E.; Nikiforova, L. R.; Salmova, J. V.; Ul'yanovskii, N. V.; Kosyakov, D. S.; Vasilyev, A. V. Synthesis of 3-Aryl-3-(Furan-2-yl)Propanoic Acid Derivatives, and Study of Their Antimicrobial Activity. Molecules (Basel, Switzerland) 2022, 27, 4612. doi:10.3390/molecules27144612
  • de la Sovera, V.; López, G. V.; Porcal, W. Synthetic Study of 5‐Hydroxymethylfurfural in Groebke‐Blackburn‐Bienaymé Reaction. European Journal of Organic Chemistry 2022, 2022. doi:10.1002/ejoc.202101369
  • Dutta, S. Valorization of biomass-derived furfurals: reactivity patterns, synthetic strategies, and applications. Biomass Conversion and Biorefinery 2021, 1–26.
  • Dutta, S. Valorization of biomass-derived furfurals: reactivity patterns, synthetic strategies, and applications. Biomass Conversion and Biorefinery 2021, 13, 10361–10386. doi:10.1007/s13399-021-01924-w
  • Kashparova, V. P.; Chernysheva, D. V.; Klushin, V. A.; Andreeva, V. E.; Kravchenko, O. A.; Smirnova, N. V. Furan monomers and polymers from renewable plant biomass. Russian Chemical Reviews 2021, 90, 750–784. doi:10.1070/rcr5018
  • Galkin, K. I.; Ananikov, V. P. The Increasing Value of Biomass: Moving From C6 Carbohydrates to Multifunctionalized Building Blocks via 5-(hydroxymethyl)furfural. ChemistryOpen 2020, 9, 1135–1148. doi:10.1002/open.202000233
  • Vuong, H.; Amadou, H.; Stentzel, M. R.; Klumpp, D. A. Superelectrophilic nazarov cyclizations with N-heterocycles. Tetrahedron 2020, 76, 131644. doi:10.1016/j.tet.2020.131644
  • Borisova, M. А.; Ryabukhin, D. S.; Vasilyev, A. V. Reactions of quinoline-2(6,8)-carbaldehydes with arenes by the action of various Brønsted or Lewis acids: synthesis of diarylmethylquinolines. Chemistry of Heterocyclic Compounds 2020, 56, 964–967. doi:10.1007/s10593-020-02759-5
  • Shinde, S.; Rode, C. V. 2,5-Diformylfuran—an oxidation product of 5-hydroxymethylfurfural. Biomass, Biofuels, Biochemicals; Elsevier, 2020; pp 95–133. doi:10.1016/b978-0-444-64307-0.00004-4
  • Raskildina, G. Z.; Borisova, Y. G.; Dzhumaev, S. S.; Zlotsky, S. S. Synthesis of Cyclic Derivatives of Carbonyl Compounds of Furan Series. Russian Journal of General Chemistry 2019, 89, 2341–2344. doi:10.1134/s1070363219120028
  • Ryabukhin, D. S.; Turdakov, A. N.; Soldatova, N. S.; Kompanets, M. O.; Ivanov, A. Y.; Boyarskaya, I. A.; Vasilyev, A. V. Reactions of 2-carbonyl- and 2-hydroxy(or methoxy)alkyl-substituted benzimidazoles with arenes in the superacid CF3SO3H. NMR and DFT studies of dicationic electrophilic species. Beilstein journal of organic chemistry 2019, 15, 1962–1973. doi:10.3762/bjoc.15.191
  • Fan, W.; Verrier, C.; Queneau, Y.; Popowycz, F. 5-Hydroxymethylfurfural (HMF) in Organic Synthesis: A Review of its Recent Applications Towards Fine Chemicals. Current organic synthesis 2019, 16, 583–614. doi:10.2174/1570179416666190412164738
  • Kuznetsova, T.; Politaeva, N.; Smyatskaya, Y. A.; Ivanova, A. R. Lemna Minor Cultivation for Biofuel Production. IOP Conference Series: Earth and Environmental Science 2019, 272, 022058. doi:10.1088/1755-1315/272/2/022058
  • Konovalov, A. I.; Antipin, I. S.; Burilov, V.; Madzhidov, T. I.; Kurbangalieva, A.; Nemtarev, A. V.; Solovieva, S. E.; Stoikov, I. I.; Mamedov, V. A.; Zakharova, L. Y.; Gavrilova, E. L.; Sinyashin, O. G.; Balova, I. A.; Vasilyev, A. V.; Zenkevich, I. G.; Krasavin, M. Y.; Kuznetsov, M. A.; Molchanov, A. P.; Novikov, M. S.; Nikolaev, V. A.; Rodina, L. L.; Khlebnikov, A. F.; Beletskaya, I. P.; Vatsadze, S. Z.; Gromov, S. P.; Zyk, N. V.; Lebedev, A. T.; Lemenovskii, D. A.; Petrosyan, V. S.; Nenaidenko, V. G.; Negrebetskii, V. V.; Baukov, Y. I.; Shmigol, T. A.; Korlyukov, A. A.; Tikhomirov, A. S.; Shchekotikhin, A. E.; Traven, V. F.; Voskresenskii, L. G.; Zubkov, F. I.; Golubchikov, O. A.; Semeikin, A. S.; Berezin, D. B.; Stuzhin, P. A.; Filimonov, V. D.; Krasnokutskaya, E. A.; Fedorov, A. Y.; Nyuchev, A. V.; Orlov, V. Y.; Begunov, R. S.; Rusakov, A. I.; Kolobov, A. V.; Kofanov, E. R.; Fedotova, O. V.; Egorova, A. Y.; Charushin, V. N.; Chupakhin, O. N.; Klimochkin, Y. N.; Osyanin, V. A.; Reznikov, A. N.; Fisyuk, A. S.; Sagitullina, G. P.; Aksenov, A. V.; Aksenov, N. A.; Grachev, M. K.; Maslennikova, V. I.; Koroteev, M. P.; Brel, A. K.; Lisina, S. V.; Medvedeva, S. M.; Shikhaliev, K. S.; Suboch, G. A.; Tovbis, M. S.; Mironovich, L. M.; Ivanov, S. M.; Kurbatov, S. V.; Kletskii, M. E.; Burov, O. N.; Kobrakov, K. I.; Kuznetsov, D. N. Modern Trends of Organic Chemistry in Russian Universities. Russian Journal of Organic Chemistry 2018, 54, 157–371. doi:10.1134/s107042801802001x
  • Vasilyev, A. V.; Sakhabutdinova, G. N. SYNTHESIS AND TRANSFORMATIONS OF SOME FIVE- AND SIX-MEMBERED HETEROCYCLES IN STRONG ACIDS. Bashkir chemistry journal 2018, 25, 5. doi:10.17122/bcj-2018-1-5-12
  • He, X.-L.; Zhao, H.-R.; Duan, C.-Q.; Du, W.; Chen, Y.-C. Remote Asymmetric Oxa-Diels–Alder Reaction of 5-Allylic Furfurals via Dearomatizative Tetraenamine Catalysis. Organic letters 2018, 20, 804–807. doi:10.1021/acs.orglett.7b03942
  • Su, Y.-L.; Han, Z.-Y.; Li, Y.; Gong, L.-Z. Asymmetric Allylation of Furfural Derivatives: Synergistic Effect of Chiral Ligand and Organocatalyst on Stereochemical Control. ACS Catalysis 2017, 7, 7917–7922. doi:10.1021/acscatal.7b02667
Other Beilstein-Institut Open Science Activities