A quadruple cascade protocol for the one-pot synthesis of fully-substituted hexahydroisoindolinones from simple substrates

  1. ,
  2. ,
  3. ,
  4. and
State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering Lanzhou University, Lanzhou 730000, P. R. China
  1. Corresponding author email
Guest Editor: D. J. Dixon
Beilstein J. Org. Chem. 2016, 12, 253–259. https://doi.org/10.3762/bjoc.12.27
Received 11 Nov 2015, Accepted 01 Feb 2016, Published 11 Feb 2016

Abstract

A new and efficient synthetic method to obtain fully-substituted hexahydroisoindolinones was developed by using bifunctional tertiary amine-thioureas as powerful catalysts. As far as we know, there is no efficient synthetic method developed toward fully-substituted hexahydroisoindolinones. The products were obtained in good yield and diastereoselectivity. The one-pot cascade quadruple protocol features readily available starting materials, simple manipulation, mild conditions and good atom economy.

Introduction

Isoindolines and their congeners are one kind of the most widespread compounds in nature. They feature not only high biological activity, but also diverse chemical properties [1-16]. Therefore, it is highly desirable to develop efficient methods toward the synthesis of isoindoline derivatives, which is a frontier in organic synthesis.

However, compared with the synthesis of their congeners, the synthesis of fully-substituted hexahydroisoindolinones is much more difficult due to the steric hindrance and the high strain of the molecular architectures [17]. Three methods to synthesize 3-substituted isoindolinones have been developed. The first method was the synthesis of 3-substituted isoindolinones from the corresponding N-methylmaleimides by the Diels–Alder reaction with 1,3-butadiene followed by hydrogenation. The second and the third methods employed the corresponding dicarboxylic acids and the carboxylic acid anhydrides, respectively [17]. To the best of our knowledge, no efficient method toward the synthesis of fully-substituted hexahydroisoindolinones has been developed so far.

The synthesis of complicated molecular structures can now be achieved by organocatalytic cascade reactions [18-33]. By simplifying the experimental procedures and reducing the usage of both solvents and reagents, one-pot reactions can improve the synthesis efficiency and both save time and reduce cost [34]. Although a few types of complicated molecules were generated through multicomponent quadruple cascade reactions, there is no report about the cascade synthesis of isoindolines in the past few decades [35-46], not mention the quadruple cascade synthesis of difficult fully-substituted hexahydroisoindolinones. Previously, we established organocatalytic domino reactions to construct very useful molecular architectures [47-60]. Based on this past experience, we decided to develop a one-pot quadruple protocol to construct this difficult molecular architecture using easily accessible substrates.

Results and Discussion

We initiated this study by using 2-benzylidenemalononitrile (1a) and 2-oxo-N,3-diphenylpropanamide (2a) [61-64] in 0.5 mL of CH3CN in the presence of 10 mol % of DABCO. After 12 h at room temperature, the reaction afforded the expected product rac-3a in 59% yield (Table 1, entry 1). We then tested different catalysts to optimize the reaction. When Et3N was used, the reaction afforded the product with 41% yield (Table 1, entry 2). However, a complex mixture was observed when DBU was used (Table 1, entry 3), while no reaction was observed when K2CO3 was used as the catalyst (Table 1, entry 4). When thioureas were used as the catalysts, we also did not get the expected product (Table 1, entries 5 and 6). Since bifunctional tertiary amine-thioureas have been proved as powerful catalysts that can catalyze a variety of organocascade reactions, we also tested thiourea catalysts, cat-1 to cat-3. Interestingly, the thioureas cat-1 and cat-2 were able to promote the reaction (Table 1, entries 7 and 8), but we obtained an even better yield when the tertiary amine-thiourea cat-3 was used as the catalyst (Table 1, entry 9). All products were racemic even when chiral catalysts were used (see Supporting Information File 1 for details). Next, we performed a solvent screening. As shown in Table 1, when DCM and THF were used as the solvent, the yield of the desired product was 33% and 34%, respectively (Table 1, entries 10 and 11). Only traces of the product were seen when toluene or methanol was used as the solvent (Table 1, entries 12 and 13). Furthermore, raising the reaction temperature was not beneficial for the diastereoselectivity of the reaction (Table 1, entry 14).

Table 1: Screening the reaction conditions.a

[Graphic 1]
entry cat. solvent drb yield [%]c
1 DABCO CH3CN 4:1 59
2 Et3N CH3CN 4:1 41
3 DBU CH3CN n.d. complex
4 K2CO3 CH3CN n.d. n.r.
5 cat-1 CH3CN n.d. n.r.
6 cat-2 CH3CN n.d. n.r.
7 DABCOd CH3CN 4:1 62
8 Et3Nd CH3CN 5:1 52
9 cat-3 CH3CN 9:1 87
10 cat-3 DCM 4:1 33
11 cat-3 THF 4:1 34
12 cat-3 toluene n.d. trace
13 cat-3 CH3OH n.d. trace
14e cat-3 CH3CN 6:1 87

aUnless otherwise noted, the reactions were carried out with 1a (0.25 mmol, 38.5 mg), 2a (0.1 mmol, 23.9 mg), catalyst (0.01 mmol, 10 mol %) in the indicated solvent (0.5 mL) at rt for 12 h. bDetermined by 1H NMR analysis of the crude products. cColumn chromatography yields. d10 mol % cat-2 was added. eThe reaction was carried out at 35 °C.

With the optimal conditions in hand, we next examined the reaction scope (Table 2). All reactions afforded the corresponding products 3at with medium to good yield and diastereoselectivity using the simple protocol at room temperature. To our delight, with our optimized reaction system, various types of substrates 1 showed very good reaction activities. Different types of substrates 1, bearing either electron withdrawing or donating groups in para-, meta- and ortho-positions, gave the desired products in good yield and diastereoselectivity (Table 2, entries 1–10 and 12), although 4-NO2C6H4 gave the product in medium yield due to its poor solubility (Table 2, entry 11). A heteroaromatic substrate such as thiophene could also be successfully employed to afford rac-3 with medium yield and diastereoselectivity (Table 2, entry 13). 3,4-Dichloro-substituted and 3,5-dimethoxy-substituted substrates produced the desired products in 84% and 55% yield with 20:1 and 15:1 diastereoselectivity, respectively (Table 2, entries 14 and 15). When substrates with different R2 and R3 were used in this reaction, the corresponding products were obtained in medium yield and diastereoselectivity (Table 2, entries 16–20). The structure of 3p was determined by X-ray analysis [65]. However, substrates with aliphatic R1, R2 or R3 did not produce the desired products (Table 2, entries 21–26).

Table 2: Substrates scope.a

[Graphic 2]
entry R1 R2 R3 drb yield [%]c
1 C6H5 C6H5 C6H5 9:1 87 (3a)
2 2-MeC6H4 C6H5 C6H5 >20:1 89 (3b)
3 3-MeC6H4 C6H5 C6H5 10:1 69 (3c)
4 4-OMeC6H4 C6H5 C6H5 10:1 66 (3d)
5 2-BrC6H4 C6H5 C6H5 >20:1 84 (3e)
6 3-ClC6H4 C6H5 C6H5 4:1 72 (3f)
7 4-FC6H4 C6H5 C6H5 >20:1 82 (3g)
8 4-CF3C6H4 C6H5 C6H5 >20:1 86 (3h)
9 2-NO2C6H4 C6H5 C6H5 >20:1 89 (3i)
10 3-NO2C6H4 C6H5 C6H5 >20:1 91 (3j)
11 4-NO2C6H4 C6H5 C6H5 3:1 42 (3k)
12 2-naphthalene C6H5 C6H5 >20:1 90 (3l)
13 2-thiophene C6H5 C6H5 3:1 51 (3m)
14 3,4-diClC6H3 C6H5 C6H5 >20:1 84 (3n)
15 3,5-diOMeC6H3 C6H5 C6H5 15:1 55 (3o)
16 C6H5 4-OMeC6H4 C6H5 4:1 56 (3p)
17 C6H5 4-ClC6H4 C6H5 >20:1 89 (3q)
18 2-naphthalene 4-OMeC6H4 C6H5 14:1 88 (3r)
19 C6H5 C6H5 4-MeC6H4 8:1 61 (3s)
20 C6H5 C6H5 4-FC6H4 8:1 61 (3t)
21 C6H5(CH2)2 C6H5 C6H5 n.d. n.r.
22 CH3(CH2)5 C6H5 C6H5 n.d. n.r.
23 C6H5 CH3(CH2)3 C6H5 n.d. n.r.
24 C6H5 CH3CH2 C6H5 n.d. n.r.
25 C6H5 C6H5 H n.d. n.r.
26 C6H5 C6H5 CH3 n.d. n.r.

aUnless otherwise noted, the reactions were carried out with 1 (0.25 mmol), 2 (0.1 mmol), cat-3 (3.6 mg, 0.01 mmol, 10 mol %) in CH3CN (0.5 mL) at rt for 12 h. bDetermined by 1H NMR analysis of the crude products. cColumn chromatography yields.

This bifunctional catalysis cascade reaction was also amenable to scale-up. When the reaction was carried out on a 3 mmol scale, the desired product was obtained in 84% yield. Therefore, this method is fast and easy to implement, and it is suitable for large-scale synthesis (Scheme 1).

[1860-5397-12-27-i1]

Scheme 1: An example of scalable synthesis.

Many isoindolinone skeletons show high biological potential as antihypertensives, anesthetics, etc. [66-68]. The useful hydrolyzed product rac-4a was obtained in 80% yield by treating rac-3a with trifluoroacetic anhydride in DCM (Scheme 2).

[1860-5397-12-27-i2]

Scheme 2: Hydrolysis reaction to produce a useful product.

Finally, we propose a mechanism for the reaction. Initially, substrate 1 is activated by catalyst (I), which reacts with substrate 2 via two Michael addition reactions to sequentially produce II and III. Then, IV is generated from III by an aldol reaction. Finally, the product is produced after the nucleophilic reaction, and the catalyst is regenerated (Scheme 3).

[1860-5397-12-27-i3]

Scheme 3: Proposed mechanism.

Conclusion

In summary, we have developed a one-pot quadruple cascade protocol to obtain fully-substituted hexahydroisoindolinones. This new, synthetic method is simple, efficient and atom-economic. This reaction can be widely used in organic synthesis due to its advantages such as simple operation, availability of raw materials, mild conditions and high efficiency.

Experimental

General procedure for the synthesis of fully-substituted hexahydroisoindolinones

Benzylidenemalononitrile (0.1 mmol), 2-oxo-N,3-diphenylpropanamide (0.25 mmol) and cat-3 (0.01 mmol) were added to a test tube, then CH3CN (0.5 mL) was added to the mixture. The reaction mixture was stirred at 300 rpm at 21 °C in a stoppered carousel tube for 12 h. The solvent was removed in vacuo and the product was purified by silica gel flash column chromatography to give the corresponding product 3.

Supporting Information

Supporting Information File 1: Experimental procedures, characterization data for all new compounds and X-ray analysis of compound 3.
Format: PDF Size: 2.5 MB Download

Acknowledgements

We are grateful to the NSFC (21172097, 21202070, 21302075 and 21372105), the International S&T Cooperation Program of China (2013DFR70580), the National Natural Science Foundation from Gansu Province of China (no. 1204WCGA015), and the “111” program from MOE of P. R. China.

References

  1. Jiaang, W.-T.; Chen, Y.-S.; Hsu, T.; Wu, S.-H.; Chien, C.-H.; Chang, C.-N.; Chang, S.-P.; Lee, S.-J.; Chen, X. Bioorg. Med. Chem. Lett. 2005, 15, 687–691. doi:10.1016/j.bmcl.2004.11.023
    Return to citation in text: [1]
  2. Van Goethem, S.; Van der Veken, P.; Dubois, V.; Soroka, A.; Lambeir, A.-M.; Chen, X.; Haemers, A.; Scharpé, S.; De Meester, I.; Augustyns, K. Bioorg. Med. Chem. Lett. 2008, 18, 4159–4162. doi:10.1016/j.bmcl.2008.05.079
    Return to citation in text: [1]
  3. Portevin, B.; Tordjman, C.; Pastoureau, P.; Bonnet, J.; De Nanteuil, G. J. Med. Chem. 2000, 43, 4582–4593. doi:10.1021/jm990965x
    Return to citation in text: [1]
  4. Mancilla, T.; Correa-Basurto, J.; Alavés Carbajal, K. S.; Sanchez Escalante, E. J. T.; Ferrara, J. T. J. Mex. Chem. Soc. 2007, 51, 96–102.
    Return to citation in text: [1]
  5. Kukkola, P. J.; Bilci, N. A.; Ikeler, T. J. Tetrahedron Lett. 1996, 37, 5065–5068. doi:10.1016/0040-4039(96)01018-0
    Return to citation in text: [1]
  6. Kukkola, P. J.; Bilci, N. A.; Ikler, T.; Savage, P.; Shetty, S. S.; DelGrande, D.; Jeng, A. Y. Bioorg. Med. Chem. Lett. 2001, 11, 1737–1740. doi:10.1016/S0960-894X(01)00273-6
    Return to citation in text: [1]
  7. Bare, T. M.; Draper, C. W.; McLaren, C. D.; Pullan, L. M.; Patel, J.; Patel, J. B. Bioorg. Med. Chem. Lett. 1993, 3, 55–60. doi:10.1016/S0960-894X(00)80091-8
    Return to citation in text: [1]
  8. Hamprecht, D.; Micheli, F.; Tedesco, G.; Checchia, A.; Donati, D.; Petrone, M.; Terreni, S.; Wood, M. Bioorg. Med. Chem. Lett. 2007, 17, 428–433. doi:10.1016/j.bmcl.2006.10.029
    Return to citation in text: [1]
  9. Ewing, D. F.; Len, C.; Mackenzie, G.; Petit, J. P.; Ronco, G.; Villa, P. J. Pharm. Pharmacol. 2001, 53, 945–948. doi:10.1211/0022357011776351
    Return to citation in text: [1]
  10. Enders, D.; Narine, A.; Toulgoat, F.; Bisschops, T. Angew. Chem., Int. Ed. 2008, 47, 5661–5665. doi:10.1002/anie.200801354
    Return to citation in text: [1]
  11. Clary, K. N.; Parvez, M.; Back, T. G. Org. Biomol. Chem. 2009, 7, 1226–1230. doi:10.1039/b817954a
    Return to citation in text: [1]
  12. Deniau, E.; Enders, D.; Couture, A.; Grandclaudon, P. Tetrahedron: Asymmetry 2005, 16, 875–881. doi:10.1016/j.tetasy.2005.01.012
    Return to citation in text: [1]
  13. Lamblin, M.; Couture, A.; Deniau, E.; Grandclaudon, P. Synthesis 2006, 1333–1338. doi:10.1055/s-2006-926413
    Return to citation in text: [1]
  14. Kobayashi, K.; Hase, M.; Hashimoto, K.; Fujita, S.; Tanmatsu, M.; Morikawa, O.; Konishi, H. Synthesis 2006, 2493–2496. doi:10.1055/s-2006-942462
    Return to citation in text: [1]
  15. Chen, K.; Pullarkat, S. A. Org. Biomol. Chem. 2012, 10, 6600–6606. doi:10.1039/c2ob25854d
    Return to citation in text: [1]
  16. Zhu, S.; Cao, J.; Wu, L.; Huang, X. J. Org. Chem. 2012, 77, 10409–10415. doi:10.1021/jo301437k
    Return to citation in text: [1]
  17. Barker, M. D.; Dixon, R. A.; Jones, S.; Marsh, B. J. Tetrahedron 2006, 62, 11663–11669. doi:10.1016/j.tet.2006.09.051
    Return to citation in text: [1] [2]
  18. Enders, D.; Grondal, C.; Hűttl, M. R. M. Angew. Chem., Int. Ed. 2007, 119, 1590–1601. doi:10.1002/ange.200603129
    Angew. Chem., Int. Ed. 2007, 46, 1570–1581. doi:10.1002/anie.200603129
    Return to citation in text: [1]
  19. Yu, X.; Wang, W. Org. Biomol. Chem. 2008, 6, 2037–2046. doi:10.1039/b800245m
    Return to citation in text: [1]
  20. Grondal, C.; Jeanty, M.; Enders, D. Nat. Chem. 2010, 2, 167–178. doi:10.1038/nchem.539
    Return to citation in text: [1]
  21. Moyano, A.; Rios, R. Chem. Rev. 2011, 111, 4703–4832. doi:10.1021/cr100348t
    Return to citation in text: [1]
  22. Albrecht, Ł.; Jiang, H.; Jørgensen, K. A. Angew. Chem. 2011, 123, 8642–8660. doi:10.1002/ange.201102522
    Angew. Chem., Int. Ed. 2011, 50, 8492–8509. doi:10.1002/anie.201102522
    Return to citation in text: [1]
  23. Grossmann, A.; Enders, D. Angew. Chem. 2012, 124, 320–332. doi:10.1002/ange.201105415
    Angew. Chem., Int. Ed. 2012, 51, 314–325. doi:10.1002/anie.201105415
    Return to citation in text: [1]
  24. Lu, L.-Q.; Chen, J.-R.; Xiao, W.-J. Acc. Chem. Res. 2012, 45, 1278–1293. doi:10.1021/ar200338s
    Return to citation in text: [1]
  25. Goudedranche, S.; Raimondi, W.; Bugaut, X.; Constantieux, T.; Bonne, D.; Rodriguez, J. Synthesis 2013, 45, 1909–1930. doi:10.1055/s-0033-1338484
    Return to citation in text: [1]
  26. Ramachary, D. B.; Barbas, C. F., III. Chem. – Eur. J. 2004, 10, 5323–5331. doi:10.1002/chem.200400597
    Return to citation in text: [1]
  27. Urushima, T.; Sakamoto, D.; Ishikawa, H.; Hayashi, Y. Org. Lett. 2010, 12, 4588–4591. doi:10.1021/ol1018932
    Return to citation in text: [1]
  28. Ishikawa, H.; Sawano, S.; Yasui, Y.; Shibata, Y.; Hayashi, Y. Angew. Chem., Int. Ed. 2011, 50, 3774–3779. doi:10.1002/anie.201005386
    Return to citation in text: [1]
  29. Roy, S.; Chen, K. Org. Lett. 2012, 14, 2496–2499. doi:10.1021/ol300783e
    Return to citation in text: [1]
  30. Volla, C. M. R.; Atodiresei, I.; Rueping, M. Chem. Rev. 2014, 114, 2390–2431. doi:10.1021/cr400215u
    Return to citation in text: [1]
  31. Cioc, R. C.; Ruijter, E.; Orru, R. V. A. Green Chem. 2014, 16, 2958–2975. doi:10.1039/c4gc00013g
    Return to citation in text: [1]
  32. Pellissier, H. Adv. Synth. Catal. 2012, 354, 237–294. doi:10.1002/adsc.201100714
    Return to citation in text: [1]
  33. Ramón, D. J.; Yus, M. Angew. Chem., Int. Ed. 2005, 44, 1602–1634. doi:10.1002/anie.200460548
    Return to citation in text: [1]
  34. Chauhan, P.; Mahajan, S.; Kaya, U.; Hack, D.; Enders, D. Adv. Synth. Catal. 2015, 357, 253–281. doi:10.1002/adsc.201401003
    Return to citation in text: [1]
  35. Hong, B.-C.; Kotame, P.; Liao, J.-H. Org. Biomol. Chem. 2011, 9, 382–386. doi:10.1039/C0OB00834F
    Return to citation in text: [1]
  36. Rueping, M.; Dufour, J.; Maji, M. S. Chem. Commun. 2012, 48, 3406–3408. doi:10.1039/c2cc00129b
    Return to citation in text: [1]
  37. Zhang, F.-L.; Xu, A.-W.; Gong, Y.-F.; Wei, M.-H.; Yang, X.-L. Chem. – Eur. J. 2009, 15, 6815–6818. doi:10.1002/chem.200900613
    Return to citation in text: [1]
  38. Enders, D.; Wang, C.; Mukanova, M.; Greb, A. Chem. Commun. 2010, 46, 2447–2449. doi:10.1039/c002839h
    Return to citation in text: [1]
  39. Rueping, M.; Haack, K.; Ieawsuwan, W.; Sundén, H.; Blanco, M.; Schoepke, F. R. Chem. Commun. 2011, 47, 3828–3830. doi:10.1039/c1cc10245a
    Return to citation in text: [1]
  40. Enders, D.; Greb, A.; Deckers, K.; Selig, P.; Merkens, C. Chem. – Eur. J. 2012, 18, 10226–10229. doi:10.1002/chem.201201493
    Return to citation in text: [1]
  41. Hong, B.-C.; Kotame, P.; Tsai, C.-W.; Liao, J.-H. Org. Lett. 2010, 12, 776–779. doi:10.1021/ol902840x
    Return to citation in text: [1]
  42. Bertelsen, S.; Johansen, R. L.; Jørgensen, K. A. Chem. Commun. 2008, 3016–3018. doi:10.1039/b806418k
    Return to citation in text: [1]
  43. Jiang, K.; Jia, Z.-J.; Yin, X.; Wu, L.; Chen, Y.-C. Org. Lett. 2010, 12, 2766–2769. doi:10.1021/ol100857s
    Return to citation in text: [1]
  44. Jhuo, D.-H.; Hong, B.-C.; Chang, C.-W.; Lee, G.-H. Org. Lett. 2014, 16, 2724–2727. doi:10.1021/ol501011t
    Return to citation in text: [1]
  45. Raja, A.; Hong, B.-C.; Lee, G.-H. Org. Lett. 2014, 16, 5756–5759. doi:10.1021/ol502821e
    Return to citation in text: [1]
  46. Chang, Y.-P.; Gurubrahamam, R.; Chen, K. Org. Lett. 2015, 17, 2908–2911. doi:10.1021/acs.orglett.5b01040
    Return to citation in text: [1]
  47. Tian, L.; Hu, X.-Q.; Li, Y.-H.; Xu, P.-F. Chem. Commun. 2013, 49, 7213–7215. doi:10.1039/c3cc43755h
    Return to citation in text: [1]
  48. Gu, Y.; Wang, Y.; Yu, T.-Y.; Liang, Y.-M.; Xu, P.-F. Angew. Chem., Int. Ed. 2014, 53, 14128–14131. doi:10.1002/anie.201406786
    Return to citation in text: [1]
  49. Wang, Y.; Yu, T.-Y.; Zhang, H.-B.; Luo, Y.-C.; Xu, P.-F. Angew. Chem., Int. Ed. 2012, 51, 12339–12342. doi:10.1002/anie.201206881
    Return to citation in text: [1]
  50. Wang, Y.; Han, R.-G.; Zhao, Y.-L.; Yang, S.; Xu, P.-F.; Dixon, D. J. Angew. Chem., Int. Ed. 2009, 48, 9834–9838. doi:10.1002/anie.200905014
    Return to citation in text: [1]
  51. Wang, Y.; Yu, D.-F.; Liu, Y.-Z.; Wei, H.; Luo, Y.-C.; Dixon, D. J.; Xu, P.-F. Chem. – Eur. J. 2010, 16, 3922–3925. doi:10.1002/chem.201000059
    Return to citation in text: [1]
  52. Jia, Z.-X.; Luo, Y.-C.; Xu, P.-F. Org. Lett. 2011, 13, 832–835. doi:10.1021/ol103069d
    Return to citation in text: [1]
  53. Tian, L.; Xu, G.-Q.; Li, Y.-H.; Liang, Y.-M.; Xu, P.-F. Chem. Commun. 2014, 50, 2428–2430. doi:10.1039/c3cc49504c
    Return to citation in text: [1]
  54. Jia, Z.-X.; Luo, Y.-C.; Wang, Y.; Chen, L.; Xu, P.-F.; Wang, B. Chem. – Eur. J. 2012, 18, 12958–12961. doi:10.1002/chem.201201362
    Return to citation in text: [1]
  55. Wang, Y.; Luo, Y.-C.; Hu, X.-Q.; Xu, P.-F. Org. Lett. 2011, 13, 5346–5349. doi:10.1021/ol2022092
    Return to citation in text: [1]
  56. Zhao, Y.-L.; Wang, Y.; Cao, J.; Liang, Y.-M.; Xu, P.-F. Org. Lett. 2014, 16, 2438–2441. doi:10.1021/ol5008185
    Return to citation in text: [1]
  57. Zhao, S.; Lin, J.-B.; Zhao, Y.-Y.; Liang, Y.-M.; Xu, P.-F. Org. Lett. 2014, 16, 1802–1805. doi:10.1021/ol500547e
    Return to citation in text: [1]
  58. Lu, H.; Lin, J.-B.; Liu, J.-Y.; Xu, P.-F. Chem. – Eur. J. 2014, 20, 11659–11663. doi:10.1002/chem.201402947
    Return to citation in text: [1]
  59. Gao, T.-P.; Lin, J.-B.; Hu, X.-Q.; Xu, P.-F. Chem. Commun. 2014, 50, 8934–8936. doi:10.1039/C4CC03896G
    Return to citation in text: [1]
  60. Wang, Y.; Lu, H.; Xu, P.-F. Acc. Chem. Res. 2015, 48, 1832–1844. doi:10.1021/acs.accounts.5b00217
    Return to citation in text: [1]
  61. Goudedranche, S.; Pierrot, D.; Constantieux, T.; Bonne, D.; Rodriguez, J. Chem. Commun. 2014, 50, 15605–15608. doi:10.1039/C4CC07731H
    Return to citation in text: [1]
  62. Wang, L.; Ni, Q.; Blümel, M.; Shu, T.; Raabe, G.; Enders, D. Chem. – Eur. J. 2015, 21, 8033–8037. doi:10.1002/chem.201500661
    Return to citation in text: [1]
  63. Joie, C.; Deckers, K.; Enders, D. Synthesis 2014, 46, 799–808. doi:10.1055/s-0033-1340565
    Return to citation in text: [1]
  64. Joie, C.; Deckers, K.; Raabe, G.; Enders, D. Synthesis 2014, 46, 1539–1546. doi:10.1055/s-0033-1340982
    Return to citation in text: [1]
  65. CCDC 1404942 (3p, minor) and CCDC 1409146 (3p, major) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data_request/cif.
    Return to citation in text: [1]
  66. Comins, D. L.; Schilling, S.; Zhang, Y. Org. Lett. 2005, 7, 95–98. doi:10.1021/ol047824w
    Return to citation in text: [1]
  67. Comins, D. L.; Hiebel, A.-C. Tetrahedron Lett. 2005, 46, 5639–5642. doi:10.1016/j.tetlet.2005.06.105
    Return to citation in text: [1]
  68. Chitanda, J. M.; Prokopchuk, D. E.; Quail, J. W.; Foley, S. R. Organometallics 2008, 27, 2337–2345. doi:10.1021/om800080e
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities