Supporting Information
Supporting information is available containing full experimental details, the source code of the process control software, along with information on the 3D printing settings for the reactor vessel fabrication. Also available are a video demonstrating the liquid handling for the automated reaction sequence and the .STL digital model files of the reactor vessels fabricated by the robotic platform.
Supporting Information File 1: Full experimental details, the source code of the process control software, along with information on the 3D printing settings for the reactor vessel fabrication. | ||
Format: PDF | Size: 1.6 MB | Download |
Supporting Information File 2: Digital 3D model files archive for the reaction vessels used. | ||
Format: ZIP | Size: 187.1 KB | Download |
Supporting Information File 3: Demonstration video of the liquid handling of the automated reaction sequence. | ||
Format: MP4 | Size: 82.7 MB | Download |
Cite the Following Article
The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot
Philip J. Kitson, Stefan Glatzel and Leroy Cronin
Beilstein J. Org. Chem. 2016, 12, 2776–2783.
https://doi.org/10.3762/bjoc.12.276
How to Cite
Kitson, P. J.; Glatzel, S.; Cronin, L. Beilstein J. Org. Chem. 2016, 12, 2776–2783. doi:10.3762/bjoc.12.276
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 142.1 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- du Preez, A.; Strydom, A. M.; Ndinteh, D. T.; Smit, E. Modular 3D printed flow system for efficient one-step synthesis of phenyl-functionalised silica-coated superparamagnetic iron oxide nanoparticles. Reaction Chemistry & Engineering 2024, 9, 2740–2749. doi:10.1039/d4re00242c
- Guillén-Soler, M.; Cronin, L. Reaction: Programmable chemputable click chemistry. Chem 2024, 10, 2621–2623. doi:10.1016/j.chempr.2024.07.032
- Bao, K.; Yoon, J. S.; Ahn, S.; Lee, J. H.; Cross, C. J.; Jeong, M. Y.; Frangioni, J. V.; Choi, H. S. A robotic system for automated chemical synthesis of therapeutic agents. Materials advances 2024, 5, 5290–5297. doi:10.1039/d4ma00099d
- Lo, S.; Baird, S. G.; Schrier, J.; Blaiszik, B.; Carson, N.; Foster, I.; Aguilar-Granda, A.; Kalinin, S. V.; Maruyama, B.; Politi, M.; Tran, H.; Sparks, T. D.; Aspuru-Guzik, A. Review of low-cost self-driving laboratories in chemistry and materials science: the "frugal twin" concept. Digital Discovery 2024, 3, 842–868. doi:10.1039/d3dd00223c
- Peng, H.; Han, B.; Tong, T.; Jin, X.; Peng, Y.; Guo, M.; Li, B.; Ding, J.; Kong, Q.; Wang, Q. 3D printing processes in precise drug delivery for personalized medicine. Biofabrication 2024, 16, 32001–032001. doi:10.1088/1758-5090/ad3a14
- Lebedev, A. N.; Rodygin, K. S.; Vakhrusheva, S. A.; Ananikov, V. P. A 60-times faster digital-discovery-compatible reaction setup with enhanced safety for chemical applications. Green Chemistry 2024, 26, 3776–3785. doi:10.1039/d3gc04064j
- Sultana, N.; Ali, A.; Waheed, A.; Aqil, M. 3D Printing in pharmaceutical manufacturing: Current status and future prospects. Materials Today Communications 2024, 38, 107987. doi:10.1016/j.mtcomm.2023.107987
- Salley, D.; Manzano, J. S.; Kitson, P. J.; Cronin, L. Robotic Modules for the Programmable Chemputation of Molecules and Materials. ACS central science 2023, 9, 1525–1537. doi:10.1021/acscentsci.3c00304
- Zhu, X. Toward the Uniform of Chemical Theory, Simulation, and Experiments in Metaverse Technology. Precision Chemistry 2023, 1, 192–198. doi:10.1021/prechem.3c00045
- Bácskay, I.; Ujhelyi, Z.; Fehér, P.; Arany, P. The Evolution of the 3D-Printed Drug Delivery Systems: A Review. Pharmaceutics 2022, 14, 1312. doi:10.3390/pharmaceutics14071312
- Hammer, A. J. S.; Leonov, A.; Bell, N. L.; Cronin, L. Chemputation and the Standardization of Chemical Informatics. JACS Au 2021, 1, 1572–1587. doi:10.1021/jacsau.1c00303
- Alimi, O. A.; Meijboom, R. Current and future trends of additive manufacturing for chemistry applications: a review. Journal of materials science 2021, 56, 16824–16850. doi:10.1007/s10853-021-06362-7
- de Carvalho, M. C. Miau, a microbalance autosampler. HardwareX 2021, 10, e00215. doi:10.1016/j.ohx.2021.e00215
- Gervasi, A.; Cardol, P.; Meyer, P. E. Open-hardware wireless controller and 3D-printed pumps for efficient liquid manipulation. HardwareX 2021, 9, e00199. doi:10.1016/j.ohx.2021.e00199
- Cao, L.; Russo, D.; Lapkin, A. A. Automated robotic platforms in design and development of formulations. AIChE Journal 2021, 67. doi:10.1002/aic.17248
- Processing of Chemicals at Scale. Chemistry for Sustainable Technologies: A Foundation; The Royal Society of Chemistry, 2021; pp 330–414. doi:10.1039/bk9781788012058-00330
- Gordeev, E. G.; Ananikov, V. P. Widely accessible 3D printing technologies in chemistry, biochemistry and pharmaceutics: applications, materials and prospects. Russian Chemical Reviews 2020, 89, 1507–1561. doi:10.1070/rcr4980
- Prabhu, G. R. D.; Urban, P. L. Elevating Chemistry Research with a Modern Electronics Toolkit. Chemical reviews 2020, 120, 9482–9553. doi:10.1021/acs.chemrev.0c00206
- Wang, X.; Guo, W.; Abu-Reziq, R.; Magdassi, S. High-Complexity WO3-Based Catalyst with Multi-Catalytic Species via 3D Printing. Catalysts 2020, 10, 840. doi:10.3390/catal10080840
- Hübner, E. G.; Lederle, F. Spezielle labortechnische Reaktoren: 3D-gedruckte Reaktoren. Springer Reference Naturwissenschaften; Springer Berlin Heidelberg, 2020; pp 1361–1389. doi:10.1007/978-3-662-56434-9_48
Patents
- CRONIN LEROY. Networked reaction systems. US 12064740 B2, Aug 20, 2024.
- CRONIN LEROY. DIGITAL REACTIONWARE. WO 2019137954 A1, July 18, 2019.