Cite the Following Article
Dynamic behavior of rearranging carbocations – implications for terpene biosynthesis
Stephanie R. Hare and Dean J. Tantillo
Beilstein J. Org. Chem. 2016, 12, 377–390.
https://doi.org/10.3762/bjoc.12.41
How to Cite
Hare, S. R.; Tantillo, D. J. Beilstein J. Org. Chem. 2016, 12, 377–390. doi:10.3762/bjoc.12.41
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 402.7 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Srivastava, P. L.; Johns, S. T.; Voice, A.; Morley, K.; Escorcia, A. M.; Miller, D. J.; Allemann, R. K.; van der Kamp, M. W. Simulation-Guided Engineering Enables a Functional Switch in Selinadiene Synthase toward Hydroxylation. ACS catalysis 2024, 14, 11034–11043. doi:10.1021/acscatal.4c02032
- González Requena, V.; Srivastava, P. L.; Miller, D. J.; Allemann, R. K. Single Point Mutation Abolishes Water Capture in Germacradien-4-ol Synthase. Chembiochem : a European journal of chemical biology 2024, e202400290. doi:10.1002/cbic.202400290
- Zhang, R.; Yuan, R.; Tian, B. PointGAT: A Quantum Chemical Property Prediction Model Integrating Graph Attention and 3D Geometry. Journal of chemical theory and computation 2024, 20, 4115–4128. doi:10.1021/acs.jctc.3c01420
- Xu, H.; Köllner, T. G.; Chen, F.; Dickschat, J. S. Mechanistic characterisation of a sesquiterpene synthase for asterisca-1,6-diene from the liverwort Radula lindenbergiana and implications for pentalenene biosynthesis. Organic & biomolecular chemistry 2024, 22, 1360–1364. doi:10.1039/d3ob02088f
- Ludwig, J.; Curado‐Carballada, C.; Hammer, S. C.; Schneider, A.; Diether, S.; Kress, N.; Ruiz‐Barragán, S.; Osuna, S.; Hauer, B. Controlling Monoterpene Isomerization by Guiding Challenging Carbocation Rearrangement Reactions in Engineered Squalene‐Hopene Cyclases. Angewandte Chemie 2024, 136. doi:10.1002/ange.202318913
- Ludwig, J.; Curado-Carballada, C.; Hammer, S. C.; Schneider, A.; Diether, S.; Kress, N.; Ruiz-Barragán, S.; Osuna, S.; Hauer, B. Controlling Monoterpene Isomerization by Guiding Challenging Carbocation Rearrangement Reactions in Engineered Squalene-Hopene Cyclases. Angewandte Chemie (International ed. in English) 2024, 63, e202318913. doi:10.1002/anie.202318913
- Feng, Z.; Guo, W.; Kong, W.-Y.; Chen, D.; Wang, S.; Tantillo, D. J. Analogies between photochemical reactions and ground-state post-transition-state bifurcations shed light on dynamical origins of selectivity. Nature chemistry 2024, 16, 615–623. doi:10.1038/s41557-023-01410-y
- Klucznik, T.; Syntrivanis, L.-D.; Baś, S.; Mikulak-Klucznik, B.; Moskal, M.; Szymkuć, S.; Mlynarski, J.; Gadina, L.; Beker, W.; Burke, M. D.; Tiefenbacher, K.; Grzybowski, B. A. Computational prediction of complex cationic rearrangement outcomes. Nature 2023, 625, 508. doi:10.1038/s41586-023-06854-3
- Lavernhe, R.; Domke, P.; Wang, Q.; Zhu, J. Enantioselective Total Synthesis of (-)-Artatrovirenol A. Journal of the American Chemical Society 2023, 145, 24408–24415. doi:10.1021/jacs.3c09683
- Srivastava, P. L.; Johns, S. T.; Walters, R.; Miller, D. J.; Van der Kamp, M. W.; Allemann, R. K. Active Site Loop Engineering Abolishes Water Capture in Hydroxylating Sesquiterpene Synthases. ACS catalysis 2023, 13, 14199–14204. doi:10.1021/acscatal.3c03920
- Whitehead, J. N.; Leferink, N. G. H.; Johannissen, L. O.; Hay, S.; Scrutton, N. S. Decoding Catalysis by Terpene Synthases. ACS catalysis 2023, 13, 12774–12802. doi:10.1021/acscatal.3c03047
- Li, C.; Wang, S.; Yin, X.; Guo, A.; Xie, K.; Chen, D.; Sui, S.; Han, Y.; Liu, J.; Chen, R.; Dai, J. Functional Characterization and Cyclization Mechanism of a Diterpene Synthase Catalyzing the Skeleton Formation of Cephalotane-Type Diterpenoids. Angewandte Chemie (International ed. in English) 2023, 62, e202306020. doi:10.1002/anie.202306020
- Li, C.; Wang, S.; Yin, X.; Guo, A.; Xie, K.; Chen, D.; Sui, S.; Han, Y.; Liu, J.; Chen, R.; Dai, J. Functional Characterization and Cyclization Mechanism of a Diterpene Synthase Catalyzing the Skeleton Formation of Cephalotane‐Type Diterpenoids. Angewandte Chemie 2023, 135. doi:10.1002/ange.202306020
- Nakano, M.; Sato, H. Theoretical study of the rearrangement reaction in bisorbicillinoid biosynthesis: insights into the molecular mechanisms involved. Organic & biomolecular chemistry 2023, 21, 5366–5371. doi:10.1039/d3ob00728f
- Lou, T.; Li, A.; Xu, H.; Pan, J.; Xing, B.; Wu, R.; Dickschat, J. S.; Yang, D.; Ma, M. Structural Insights into Three Sesquiterpene Synthases for the Biosynthesis of Tricyclic Sesquiterpenes and Chemical Space Expansion by Structure-Based Mutagenesis. Journal of the American Chemical Society 2023, 145, 8474–8485. doi:10.1021/jacs.3c00278
- Suenaga-Hiromori, M.; Mogi, D.; Kikuchi, Y.; Tong, J.; Kurisu, N.; Aoki, Y.; Amano, H.; Furutani, M.; Shimoyama, T.; Waki, T.; Nakayama, T.; Takahashi, S. Comprehensive identification of terpene synthase genes and organ-dependent accumulation of terpenoid volatiles in a traditional medicinal plant Angelica archangelica L. Plant biotechnology (Tokyo, Japan) 2022, 39, 391–404. doi:10.5511/plantbiotechnology.22.1006a
- Stowell, E. A.; Ehrenberger, M. A.; Lin, Y.-L.; Chang, C.-Y.; Rudolf, J. D. Structure-guided product determination of the bacterial type II diterpene synthase Tpn2. Communications chemistry 2022, 5, 146. doi:10.1038/s42004-022-00765-6
- Tran, C. D.; Dräger, G.; Struwe, H. F.; Siedenberg, L.; Vasisth, S.; Grunenberg, J.; Kirschning, A. Cyclopropylmethyldiphosphates are substrates for sesquiterpene synthases: experimental and theoretical results. Organic & biomolecular chemistry 2022, 20, 7833–7839. doi:10.1039/d2ob01279k
- Whitehead, J. N.; Leferink, N. G. H.; Komati Reddy, G.; Levy, C. W.; Hay, S.; Takano, E.; Scrutton, N. S. How a 10-epi-Cubebol Synthase Avoids Premature Reaction Quenching to Form a Tricyclic Product at High Purity. ACS catalysis 2022, 12, 12123–12131. doi:10.1021/acscatal.2c03155
- Guo, W.; Hare, S. R.; Chen, S.-S.; Saunders, C. M.; Tantillo, D. J. C-H Insertion in Dirhodium Tetracarboxylate-Catalyzed Reactions despite Dynamical Tendencies toward Fragmentation: Implications for Reaction Efficiency and Catalyst Design. Journal of the American Chemical Society 2022, 144, 17219–17231. doi:10.1021/jacs.2c07681