Cite the Following Article
Biomimetic molecular design tools that learn, evolve, and adapt
David A Winkler
Beilstein J. Org. Chem. 2017, 13, 1288–1302.
https://doi.org/10.3762/bjoc.13.125
How to Cite
Winkler, D. A. Beilstein J. Org. Chem. 2017, 13, 1288–1302. doi:10.3762/bjoc.13.125
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.1 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Winkler, D. A.; Hughes, A. E.; Özkan, C.; Mol, A.; Würger, T.; Feiler, C.; Zhang, D.; Lamaka, S. Impact of inhibition mechanisms, automation, and computational models on the discovery of organic corrosion inhibitors. Progress in Materials Science 2024, 101392. doi:10.1016/j.pmatsci.2024.101392
- Solórzano Requejo, W.; Franco Martínez, F.; Aguilar Vega, C.; Zapata Martínez, R.; Martínez Cendrero, A.; Díaz Lantada, A. Fostering creativity in engineering design through constructive dialogues with generative artificial intelligence. Cell Reports Physical Science 2024, 5, 102157. doi:10.1016/j.xcrp.2024.102157
- Winkler, D. A. Probing the properties of molecules and complex materials using machine learning. Australian Journal of Chemistry 2022, 75, 906–922. doi:10.1071/ch22138
- Barrera, M. D. B.; Franco-Martínez, F.; Lantada, A. D. Artificial Intelligence Aided Design of Tissue Engineering Scaffolds Employing Virtual Tomography and 3D Convolutional Neural Networks. Materials (Basel, Switzerland) 2021, 14, 5278. doi:10.3390/ma14185278
- Lantada, A. D.; Franco-Martínez, F.; Hengsbach, S.; Rupp, F.; Thelen, R.; Bade, K. Artificial Intelligence Aided Design of Microtextured Surfaces: Application to Controlling Wettability. Nanomaterials (Basel, Switzerland) 2020, 10, 2287. doi:10.3390/nano10112287
- Sonkaria, S.; Khare, V. Exploring the landscape between synthetic and biosynthetic materials discovery: important considerations via systems connectivity, cooperation and scale-driven convergence in biomanufacturing. Biomanufacturing Reviews 2020, 5, 1–23. doi:10.1007/s40898-020-0007-7
- Feiler, C.; Mei, D.; Vaghefinazari, B.; Würger, T.; Meißner, R. H.; Luthringer-Feyerabend, B. J.; Winkler, D. A.; Zheludkevich, M. L.; Lamaka, S. V. In silico screening of modulators of magnesium dissolution. Corrosion Science 2020, 163, 108245. doi:10.1016/j.corsci.2019.108245
- Vasilevich, A.; de Boer, J. Robot-scientists will lead tomorrow's biomaterials discovery. Current Opinion in Biomedical Engineering 2018, 6, 74–80. doi:10.1016/j.cobme.2018.03.005
- Winkler, D. A. Predicting the Performance of Organic Corrosion Inhibitors. Metals 2017, 7, 553. doi:10.3390/met7120553