Supporting Information
Supporting Information File 1: Details of experimental set-up and protocols, table of a priori data taken from our previous study, details of model development, MBDoE results, and LHS results. | ||
Format: PDF | Size: 1.1 MB | Download |
Cite the Following Article
Self-optimisation and model-based design of experiments for developing a C–H activation flow process
Alexander Echtermeyer, Yehia Amar, Jacek Zakrzewski and Alexei Lapkin
Beilstein J. Org. Chem. 2017, 13, 150–163.
https://doi.org/10.3762/bjoc.13.18
How to Cite
Echtermeyer, A.; Amar, Y.; Zakrzewski, J.; Lapkin, A. Beilstein J. Org. Chem. 2017, 13, 150–163. doi:10.3762/bjoc.13.18
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 654.5 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Rogers, A. W.; Lane, A.; Mendoza, C.; Watson, S.; Kowalski, A.; Martin, P.; Zhang, D. Integrating knowledge-guided symbolic regression and model-based design of experiments to automate process flow diagram development. Chemical Engineering Science 2024, 300, 120580. doi:10.1016/j.ces.2024.120580
- Tom, G.; Schmid, S. P.; Baird, S. G.; Cao, Y.; Darvish, K.; Hao, H.; Lo, S.; Pablo-García, S.; Rajaonson, E. M.; Skreta, M.; Yoshikawa, N.; Corapi, S.; Akkoc, G. D.; Strieth-Kalthoff, F.; Seifrid, M.; Aspuru-Guzik, A. Self-Driving Laboratories for Chemistry and Materials Science. Chemical reviews 2024, 124, 9633–9732. doi:10.1021/acs.chemrev.4c00055
- Agunloye, E.; Petsagkourakis, P.; Yusuf, M.; Labes, R.; Chamberlain, T.; Muller, F. L.; Bourne, R. A.; Galvanin, F. Automated kinetic model identification via cloud services using model-based design of experiments. Reaction Chemistry & Engineering 2024, 9, 1859–1876. doi:10.1039/d4re00047a
- Liu, P.; Jin, H.; Chen, Y.; Wang, D.; Yan, H.; Wu, M.; Zhao, F.; Zhu, W. Process analytical technologies and self-optimization algorithms in automated pharmaceutical continuous manufacturing. Chinese Chemical Letters 2024, 35, 108877. doi:10.1016/j.cclet.2023.108877
- Wang, J. Y.; Stevens, J. M.; Kariofillis, S. K.; Tom, M.-J.; Golden, D. L.; Li, J.; Tabora, J. E.; Parasram, M.; Shields, B. J.; Primer, D. N.; Hao, B.; Del Valle, D.; DiSomma, S.; Furman, A.; Zipp, G. G.; Melnikov, S.; Paulson, J.; Doyle, A. G. Identifying general reaction conditions by bandit optimization. Nature 2024, 626, 1025–1033. doi:10.1038/s41586-024-07021-y
- Parveen, F.; Morris, H. J.; West, H.; Slater, A. G. Continuous flow synthesis of meso-substituted porphyrins with inline UV–Vis analysis. Journal of Flow Chemistry 2024, 14, 23–31. doi:10.1007/s41981-023-00305-w
- Rogers, A. W.; Lane, A.; Mendoza, C.; Watson, S.; Kowalski, A.; Martin, P.; Zhang, D. Integrating Knowledge-Guided Symbolic Regression and Model-Based Design of Experiments to Accelerate Process Flow Diagram Development. IFAC-PapersOnLine 2024, 58, 127–132. doi:10.1016/j.ifacol.2024.08.325
- Shen, R.; Su, W. A Review of the Applications of Artificial Intelligence in the Process Analysis and Optimization of Chemical Products. Pharmaceutical Fronts 2023, 5, e219–e226. doi:10.1055/s-0043-1777425
- Liang, R.; Hu, H.; Han, Y.; Chen, B.; Yuan, Z. CAPBO: A cost‐aware parallelized Bayesian optimization method for chemical reaction optimization. AIChE Journal 2023, 70. doi:10.1002/aic.18316
- Pankajakshan, A.; Bawa, S. G.; Gavriilidis, A.; Galvanin, F. Autonomous kinetic model identification using optimal experimental design and retrospective data analysis: methane complete oxidation as a case study. Reaction Chemistry & Engineering 2023, 8, 3000–3017. doi:10.1039/d3re00156c
- Lin, D.-Z.; Fang, G.; Liao, K. Synthesize in a Smart Way: A Brief Introduction to Intelligence and Automation in Organic Synthesis. Challenges and Advances in Computational Chemistry and Physics; Springer International Publishing, 2023; pp 227–275. doi:10.1007/978-3-031-37196-7_8
- Cenci, F.; Pankajakshan, A.; Facco, P.; Galvanin, F. An exploratory model-based design of experiments approach to aid parameters identification and reduce model prediction uncertainty. Computers & Chemical Engineering 2023, 177, 108353. doi:10.1016/j.compchemeng.2023.108353
- Filipa de Almeida, A.; Rodrigues, T. doi:10.1002/9781119855668.ch10
- Taylor, C. J.; Pomberger, A.; Felton, K. C.; Grainger, R.; Barecka, M.; Chamberlain, T. W.; Bourne, R. A.; Johnson, C. N.; Lapkin, A. A. A Brief Introduction to Chemical Reaction Optimization. Chemical reviews 2023, 123, 3089–3126. doi:10.1021/acs.chemrev.2c00798
- Babu, S. A.; Padmavathi, R.; Aggarwal, Y.; Kaur, R.; Suwasia, S. doi:10.1002/9783527834242.chf0006
- Knoll, S.; Jusner, C. E.; Sagmeister, P.; Williams, J. D.; Hone, C. A.; Horn, M.; Kappe, C. O. Autonomous model-based experimental design for rapid reaction development. Reaction Chemistry & Engineering 2022, 7, 2375–2384. doi:10.1039/d2re00208f
- van der Westhuizen, C. J.; du Toit, J.; Neyt, N.; Riley, D.; Panayides, J.-L. Use of open-source software platform to develop dashboards for control and automation of flow chemistry equipment. Digital Discovery 2022, 1, 596–604. doi:10.1039/d2dd00036a
- Rincón, J. A.; Nieves‐Remacha, M. J.; Mateos, C. doi:10.1002/9783527824595.ch2
- Rodriguez-Zubiri, M.; Felpin, F.-X. Analytical Tools Integrated in Continuous-Flow Reactors: Which One for What?. Organic Process Research & Development 2022, 26, 1766–1793. doi:10.1021/acs.oprd.2c00102
- Bennett, J. A.; Abolhasani, M. Autonomous chemical science and engineering enabled by self-driving laboratories. Current Opinion in Chemical Engineering 2022, 36, 100831. doi:10.1016/j.coche.2022.100831