Cite the Following Article
Dynamics and interactions of ibuprofen in cyclodextrin nanosponges by solid-state NMR spectroscopy
Monica Ferro, Franca Castiglione, Nadia Pastori, Carlo Punta, Lucio Melone, Walter Panzeri, Barbara Rossi, Francesco Trotta and Andrea Mele
Beilstein J. Org. Chem. 2017, 13, 182–194.
https://doi.org/10.3762/bjoc.13.21
How to Cite
Ferro, M.; Castiglione, F.; Pastori, N.; Punta, C.; Melone, L.; Panzeri, W.; Rossi, B.; Trotta, F.; Mele, A. Beilstein J. Org. Chem. 2017, 13, 182–194. doi:10.3762/bjoc.13.21
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 936.2 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Pyrak, B.; Rogacka-Pyrak, K.; Gubica, T.; Szeleszczuk, Ł. Exploring Cyclodextrin-Based Nanosponges as Drug Delivery Systems: Understanding the Physicochemical Factors Influencing Drug Loading and Release Kinetics. International journal of molecular sciences 2024, 25, 3527. doi:10.3390/ijms25063527
- Lacalamita, D.; Bertini, S.; Mongioví, C.; Cosentino, C.; Morin-Crini, N.; Torri, G.; Fourmentin, M.; Naggi, A.; Fourmentin, S.; Guerrini, M.; Crini, G. Characterization of Cyclodextrin Cross-linked Polymers Used in Environmental Applications by Solid-state NMR Spectroscopy: a Historical Review. The Environment in a Magnet; Royal Society of Chemistry, 2024; pp 316–352. doi:10.1039/bk9781837671250-00316
- Singh, S.; Sharma, K.; Sharma, H. Cyclodextrin Nanosponges: A Revolutionary Drug Delivery Strategy. Pharmaceutical nanotechnology 2024, 12, 300–313. doi:10.2174/0122117385273293230927081513
- Gu, B.-X.; Wu, H.-H.; Sun, D.; Ji, Y.-L.; Gao, C.-J. Zwitterionic cyclodextrin membrane with uniform subnanometre pores for high-efficient heavy metal ions removal. Journal of Membrane Science 2023, 688, 122123. doi:10.1016/j.memsci.2023.122123
- Machado, T. F.; Utzeri, G.; Valente, A. J. M.; Serra, M. E. S.; Murtinho, D. Click nanosponge - A novel amine-rich β-cyclodextrin-based crosslinked polymer for heterogeneous catalysis. Carbohydrate polymers 2023, 326, 121612. doi:10.1016/j.carbpol.2023.121612
- Utzeri, G.; Murtinho, D.; Valente, A. J. M. Introduction to Cyclodextrin-Based Nanosponges. Nanosponges for Environmental Remediation; Springer Nature Switzerland, 2023; pp 87–115. doi:10.1007/978-3-031-41077-2_5
- Mazurek, A. H.; Szeleszczuk, Ł. A Review of Applications of Solid-State Nuclear Magnetic Resonance (ssNMR) for the Analysis of Cyclodextrin-Including Systems. International journal of molecular sciences 2023, 24, 3648. doi:10.3390/ijms24043648
- Gu, B.-X.; Wu, H.-H.; Sun, D.; Ji, Y.-L.; Gao, C. Zwitterionic Cyclodextrin Membrane with Uniform Subnanometre Pores for High-Efficient Heavy Metal Ions Removal. Elsevier BV 2023. doi:10.2139/ssrn.4535416
- Utzeri, G.; Matias, P. M. C.; Murtinho, D.; Valente, A. J. M. Cyclodextrin-Based Nanosponges: Overview and Opportunities. Frontiers in chemistry 2022, 10, 859406. doi:10.3389/fchem.2022.859406
- Gackowski, M.; Paczwa, M. The Impact of Hydration and Dehydration on the Mobility and Location of Ibuprofen Molecules in the Voids of Ultra-Stable Zeolite Y. Materials (Basel, Switzerland) 2021, 14, 7823. doi:10.3390/ma14247823
- Gackowski, M.; Ruggiero-Mikołajczyk, M.; Duraczyńska, D.; Hinz, A.; Bzowska, M.; Szczepanowicz, K. The role of water in the confinement of ibuprofen in SBA-15. Journal of materials chemistry. B 2021, 9, 7482–7491. doi:10.1039/d1tb01498f
- Appleton, S. L.; Navarro-Orcajada, S.; Martínez-Navarro, F. J.; Caldera, F.; López-Nicolás, J. M.; Trotta, F.; Matencio, A. Cyclodextrins as Anti-inflammatory Agents: Basis, Drugs and Perspectives. Biomolecules 2021, 11, 1384. doi:10.3390/biom11091384
- Tannous, M.; Caldera, F.; Hoti, G.; Dianzani, U.; Cavalli, R.; Trotta, F. Drug-Encapsulated Cyclodextrin Nanosponges. Methods in molecular biology (Clifton, N.J.) 2020, 2207, 247–283. doi:10.1007/978-1-0716-0920-0_19
- Appleton, S. L.; Tannous, M.; Argenziano, M.; Muntoni, E.; Rosa, A. C.; Rossi, D.; Caldera, F.; Scomparin, A.; Trotta, F.; Cavalli, R. Nanosponges as protein delivery systems: Insulin, a case study. International journal of pharmaceutics 2020, 590, 119888–119898. doi:10.1016/j.ijpharm.2020.119888
- Krabicová, I.; Appleton, S. L.; Tannous, M.; Hoti, G.; Caldera, F.; Pedrazzo, A. R.; Cecone, C.; Cavalli, R.; Trotta, F. History of Cyclodextrin Nanosponges. Polymers 2020, 12, 1122–1144. doi:10.3390/polym12051122
- Adeoye, O.; Bártolo, I.; Conceição, J.; Silva, A.; Duarte, N.; Francisco, A. P.; Taveira, N.; Cabral-Marques, H. Pyromellitic dianhydride crosslinked soluble cyclodextrin polymers: Synthesis, lopinavir release from sub-micron sized particles and anti-HIV-1 activity. International journal of pharmaceutics 2020, 583, 119356. doi:10.1016/j.ijpharm.2020.119356
- Rossi, B.; D'Amico, F.; Masciovecchio, C. Nanosponges; Wiley, 2019; pp 227–261. doi:10.1002/9783527341009.ch8
- Corsi, I.; Fiorati, A.; Grassi, G.; Bartolozzi, I.; Daddi, T.; Melone, L.; Punta, C. Environmentally Sustainable and Ecosafe Polysaccharide-Based Materials for Water Nano-Treatment: An Eco-Design Study. Materials (Basel, Switzerland) 2018, 11, 1228–1250. doi:10.3390/ma11071228
- Sun, Q.; Tang, P.; Zhao, L.; Pu, H.; Zhai, Y.; Li, H. Mechanism and structure studies of cinnamaldehyde/cyclodextrins inclusions by computer simulation and NMR technology. Carbohydrate polymers 2018, 194, 294–302. doi:10.1016/j.carbpol.2018.04.055
- Pradhan, S. K.; Rajamani, S.; Agrawal, G.; Dash, M.; Samal, S. K. NMR, FT-IR and raman characterization of biomaterials. Characterization of Polymeric Biomaterials; Elsevier, 2017; pp 147–173. doi:10.1016/b978-0-08-100737-2.00007-8