The effect of milling frequency on a mechanochemical organic reaction monitored by in situ Raman spectroscopy

Patrick A. Julien, Ivani Malvestiti and Tomislav Friščić
Beilstein J. Org. Chem. 2017, 13, 2160–2168. https://doi.org/10.3762/bjoc.13.216

Supporting Information

Supporting Information File 1: Experimental part.
Format: PDF Size: 2.0 MB Download

Cite the Following Article

The effect of milling frequency on a mechanochemical organic reaction monitored by in situ Raman spectroscopy
Patrick A. Julien, Ivani Malvestiti and Tomislav Friščić
Beilstein J. Org. Chem. 2017, 13, 2160–2168. https://doi.org/10.3762/bjoc.13.216

How to Cite

Julien, P. A.; Malvestiti, I.; Friščić, T. Beilstein J. Org. Chem. 2017, 13, 2160–2168. doi:10.3762/bjoc.13.216

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 706.8 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Basoccu, F.; De Luca, L.; Porcheddu, A. Mechanochemistry in Organic Synthesis: An Italian Journey through Innovations. European Journal of Organic Chemistry 2024, 27. doi:10.1002/ejoc.202400425
  • Zholdassov, Y. S.; Kwok, R. W.; Shlain, M. A.; Patel, M.; Marianski, M.; Braunschweig, A. B. Kinetics of primary mechanochemical covalent-bond-forming reactions. RSC Mechanochemistry 2024, 1, 11–32. doi:10.1039/d3mr00018d
  • Leger, M. E.; Guo, J.; MacMillan, B.; Titi, H. M.; Friščić, T.; Balcom, B.; Blight, B. A. In situ monitoring of mechanochemical MOF formation by NMR relaxation time correlation. Physical chemistry chemical physics : PCCP 2023, 26, 543–550. doi:10.1039/d3cp05555h
  • Julien, P. A.; Arhangelskis, M.; Germann, L. S.; Etter, M.; Dinnebier, R. E.; Morris, A. J.; Friščić, T. Illuminating milling mechanochemistry by tandem real-time fluorescence emission and Raman spectroscopy monitoring. Chemical science 2023, 14, 12121–12132. doi:10.1039/d3sc04082h
  • Hollenbach, R.; Ochsenreither, K. Mechanoenzymatic Reactions – Challenges and Perspectives. ChemCatChem 2023, 15. doi:10.1002/cctc.202300656
  • Scheurrell, K.; B Martins, I. C.; Murray, C.; Emmerling, F. Exploring the role of solvent polarity in mechanochemical Knoevenagel condensation: in situ investigation and isolation of reaction intermediates. Physical chemistry chemical physics : PCCP 2023, 25, 23637–23644. doi:10.1039/d3cp02883f
  • Mazaheri, O.; Zavabeti, A.; McQuillan, R. V.; Lin, Z.; Alivand, M. S.; Della Gaspera, E.; Chen, D.; Caruso, F.; Suter, H.; Mumford, K. A. Solid-State Encapsulation of Urea via Mechanochemistry-Driven Engineering of Metal–Phenolic Networks. Chemistry of Materials 2023, 35, 7800–7813. doi:10.1021/acs.chemmater.3c01696
  • Hernández, J. G.; Ardila-Fierro, K. J.; Gómez, S.; Stolar, T.; Rubčić, M.; Topić, E.; Hadad, C. Z.; Restrepo, A. The Role of Crystalline Intermediates in Mechanochemical Cyclorhodation Reactions Elucidated by in-Situ X-ray Powder Diffraction and Computation. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202301290. doi:10.1002/chem.202301290
  • Van Poucke, C.; Vandeputte, A.; Mangelinckx, S.; Stevens, C. V. Green mechanochemical synthesis of water-soluble N-sulfonated chitosan. Green Chemistry 2023, 25, 4271–4281. doi:10.1039/d3gc00549f
  • Pagola, S. Outstanding Advantages, Current Drawbacks, and Significant Recent Developments in Mechanochemistry: A Perspective View. Crystals 2023, 13, 124. doi:10.3390/cryst13010124
  • Gonnet, L.; Borchers, T. H.; Lennox, C. B.; Vainauskas, J.; Teoh, Y.; Titi, H. M.; Barrett, C. J.; Koenig, S. G.; Nagapudi, K.; Friščić, T. The "η-sweet-spot" (ηmax) in liquid-assisted mechanochemistry: polymorph control and the role of a liquid additive as either a catalyst or an inhibitor in resonant acoustic mixing (RAM). Faraday discussions 2023, 241, 128–149. doi:10.1039/d2fd00131d
  • Бухтояров, В.; Бычков, А.; Ломовский, О. ИССЛЕДОВАНИЕ ЭНЕРГОЭФФЕКТИВНОСТИ МЕХАНОХИМИЧЕСКОГО ОБОРУДОВАНИЯ. In Технологии и оборудование химической, биотехнологической и пищевой промышленности, Crossref, 2022; pp 281–284. doi:10.25699/tohbipp.2022.65.91.030
  • Julien, P. A.; Friščić, T. Methods for Monitoring Milling Reactions and Mechanistic Studies of Mechanochemistry: A Primer. Crystal Growth & Design 2022, 22, 5726–5754. doi:10.1021/acs.cgd.2c00587
  • Lukin, S.; Germann, L. S.; Friščić, T.; Halasz, I. Toward Mechanistic Understanding of Mechanochemical Reactions Using Real-Time In Situ Monitoring. Accounts of chemical research 2022, 55, 1262–1277. doi:10.1021/acs.accounts.2c00062
  • Zänker, S.; Scholz, G.; Marquardt, J.; Emmerling, F. Structural changes in Ba‐compounds of different hardness induced by high‐energy ball milling – evidenced by 137Ba NMR and X‐ray powder diffraction. Zeitschrift für anorganische und allgemeine Chemie 2022, 648. doi:10.1002/zaac.202200026
  • Michalchuk, A. A. L.; Emmerling, F. Zeitaufgelöste In‐Situ‐Untersuchungen von mechanochemischen Reaktionen. Angewandte Chemie 2022, 134. doi:10.1002/ange.202117270
  • Michalchuk, A. A. L.; Emmerling, F. Time-Resolved In Situ Monitoring of Mechanochemical Reactions. Angewandte Chemie (International ed. in English) 2022, 61, e202117270. doi:10.1002/anie.202117270
  • Chatziadi, A.; Skorepova, E.; Jirat, J.; Rohlíček, J.; Šoóš, M. Characterization and Insights into the Formation of New Multicomponent Solid Forms of Sofosbuvir. Crystal Growth & Design 2022, 22, 3395–3404. doi:10.1021/acs.cgd.2c00207
  • Chatziadi, A.; Skořepová, E.; Kohout, M.; Ridvan, L.; Šoóš, M. Exploring the polymorphism of sofosbuvir via mechanochemistry: effect of milling jar geometry and material. CrystEngComm 2022, 24, 2107–2117. doi:10.1039/d1ce01561c
  • Adassooriya, N. M.; Mahanta, S. P.; Thakuria, R. Mechanochemistry as an emerging tool for the preparation of sustained release urea cocrystals as a nitrogen source. CrystEngComm 2022, 24, 1679–1689. doi:10.1039/d1ce01713f
Other Beilstein-Institut Open Science Activities