Cite the Following Article
Continuous-flow processes for the catalytic partial hydrogenation reaction of alkynes
Carmen Moreno-Marrodan, Francesca Liguori and Pierluigi Barbaro
Beilstein J. Org. Chem. 2017, 13, 734–754.
https://doi.org/10.3762/bjoc.13.73
How to Cite
Moreno-Marrodan, C.; Liguori, F.; Barbaro, P. Beilstein J. Org. Chem. 2017, 13, 734–754. doi:10.3762/bjoc.13.73
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 269.9 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Zhang, Y.; Zhao, X.; Qing, G. Electrochemical-induced hydrofunctionalizations of alkenes and alkynes. Chemical Synthesis 2024, 4. doi:10.20517/cs.2023.38
- Zawadzki, B.; Fernández Ropero, A. J.; Abid, R.; Matus, K.; Krawczyk, M.; Patkowski, W.; Raróg – Pilecka, W.; Lisovystkiy, D.; Śrębowata, A. Mesoporous carbon supported Cu as the efficient catalyst for flow hydrogenation processes toward formation of products with pharmaceutical potential. Microporous and Mesoporous Materials 2023, 362, 112803. doi:10.1016/j.micromeso.2023.112803
- Li, B.; Cheng, Z.; Zhang, X.; Feng, F.; Xu, X.; Lu, C.; Zhang, Q.; Wang, Q.; Li, X. Synthesis of 2-Methylbenzimidazole in Continuous Flow: Mechanism of Cu–Pd/(K)γ-Al2O3-Catalyzed Deactivation and Regeneration. Industrial & Engineering Chemistry Research 2023, 62, 17473–17482. doi:10.1021/acs.iecr.3c01920
- Gupta, A.; Gupta, R.; Arora, G.; Yadav, P.; Sharma, R. K. Heterogeneous Catalysis under Continuous Flow Conditions. Current Organic Chemistry 2023, 27, 1090–1110. doi:10.2174/0113852728268688230921105908
- Swamy, A.; Kanakikodi, K. S.; Bakuru, V. R.; Kulkarni, B. B.; Maradur, S. P.; Kalidindi, S. B. Continuous Flow Liquid‐Phase Semihydrogenation of Phenylacetylene over Pd Nanoparticles Supported on UiO‐66(Hf) Metal‐Organic Framework. ChemistrySelect 2023, 8. doi:10.1002/slct.202203926
- Si, Y.; Liu, S.; Ming, W.; Wei, W.; Ji, L.; Zhang, J.; An, T.; Gong, D.; Zhao, J.; Meng, Q.; Yan, D. Micropacked‐bed Reactor for Continuous Hydrogenation of Aromatic Dinitro Compounds. ChemistrySelect 2022, 7. doi:10.1002/slct.202203577
- Wu, J.; Chen, J.; Cui, J.; Yang, Z.; Zhang, J. Triazole-based covalent gels assembled from small molecules with superior stability for supported catalysis in a monolithic microfluidic reactor. Applied Catalysis A: General 2022, 646, 118851. doi:10.1016/j.apcata.2022.118851
- Asano, S.; Adams, S. J.; Tsuji, Y.; Yoshizawa, K.; Tahara, A.; Hayashi, J.-i.; Cherkasov, N. Homogeneous catalyst modifier for alkyne semi-hydrogenation: systematic screening in an automated flow reactor and computational study on mechanisms. Reaction Chemistry & Engineering 2022, 7, 1818–1826. doi:10.1039/d2re00147k
- Masson, E.; Maciejewski, E. M.; Wheelhouse, K. M. P.; Edwards, L. J. Fixed Bed Continuous Hydrogenations in Trickle Flow Mode: A Pharmaceutical Industry Perspective. Organic Process Research & Development 2022, 26, 2190–2223. doi:10.1021/acs.oprd.2c00034
- Denisova, E. A.; Kostyukovich, A. Y.; Fakhrutdinov, A. N.; Korabelnikova, V. A.; Galushko, A. S.; Ananikov, V. P. "Hidden" Nanoscale Catalysis in Alkyne Hydrogenation with Well-Defined Molecular Pd/NHC Complexes. ACS Catalysis 2022, 12, 6980–6996. doi:10.1021/acscatal.2c01749
- Xu, X.; Zhang, M.; Jiang, P.; Liu, D.; Wang, Y.; Xu, X.; Ji, Z.; Jia, X.; Wang, H.; Wang, X. Direct ink writing of Pd-Decorated Al2O3 ceramic based catalytic reduction continuous flow reactor. Ceramics International 2022, 48, 10843–10851. doi:10.1016/j.ceramint.2021.12.301
- Xu, Y.; Gao, C.; Andreasson, M.; Håversen, L.; Carrasco, M. P.; Fleming, C.; Lundbäck, T.; Andréasson, J.; Grøtli, M. Design and development of photoswitchable DFG-Out RET kinase inhibitors. European journal of medicinal chemistry 2022, 234, 114226. doi:10.1016/j.ejmech.2022.114226
- Oberhauser, W.; Frediani, M.; Mohammadi Dehcheshmeh, I.; Evangelisti, C.; Poggini, L.; Capozzoli, L.; Najafi Moghadam, P. Selective Alkyne Semi‐Hydrogenation by PdCu Nanoparticles Immobilized on Stereocomplexed Poly(lactic acid). ChemCatChem 2022, 14. doi:10.1002/cctc.202101910
- Brandi, F.; Al-Naji, M. Sustainable Sorbitol Dehydration to Isosorbide using Solid Acid Catalysts: Transition from Batch Reactor to Continuous-Flow System. ChemSusChem 2022, 15, e202102525. doi:10.1002/cssc.202102525
- Mironenko, R. M.; Likholobov, V. A.; Belskaya, O. B. Nanoglobular carbon and palladium catalysts based on it for liquid-phase hydrogenation of organic compounds. Russian Chemical Reviews 2022, 91, RCR5017. doi:10.1070/rcr5017
- Fernández-Ropero, A. J.; Zawadzki, B.; Matus, K.; Patkowski, W.; Krawczyk, M.; Lisovytskiy, D.; Raróg-Pilecka, W.; Śrębowata, A. Co Loading Adjustment for the Effective Obtention of a Sedative Drug Precursor through Efficient Continuous-Flow Chemoselective Hydrogenation of 2-Methyl-2-Pentenal. Catalysts 2021, 12, 19. doi:10.3390/catal12010019
- Chen, X.; Shi, C.; Wang, X.-B.; Li, W.-Y.; Liang, C. Intermetallic PdZn nanoparticles catalyze the continuous-flow hydrogenation of alkynols to cis-enols. Communications chemistry 2021, 4, 175. doi:10.1038/s42004-021-00612-0
- Salique, F.; Musina, A.; Winter, M.; Yann, N.; Roth, P. M. C. Continuous Hydrogenation: Triphasic System Optimization at Kilo Lab Scale Using a Slurry Solution. Frontiers in Chemical Engineering 2021, 3. doi:10.3389/fceng.2021.701910
- Alfano, A. I.; Brindisi, M.; Lange, H. Flow synthesis approaches to privileged scaffolds – recent routes reviewed for green and sustainable aspects. Green Chemistry 2021, 23, 2233–2292. doi:10.1039/d0gc03883k
- Liguori, F.; Oldani, C.; Capozzoli, L.; Calisi, N.; Barbaro, P. Liquid-phase synthesis of methyl isobutyl ketone over bifunctional heterogeneous catalysts comprising cross-linked perfluorinated sulfonic acid Aquivion polymers and supported Pd nanoparticles. Applied Catalysis A: General 2021, 610, 117957. doi:10.1016/j.apcata.2020.117957