Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block

Yuta Isoda, Norihiko Sasaki, Kei Kitamura, Shuji Takahashi, Sujit Manmode, Naoko Takeda-Okuda, Jun-ichi Tamura, Toshiki Nokami and Toshiyuki Itoh
Beilstein J. Org. Chem. 2017, 13, 919–924. https://doi.org/10.3762/bjoc.13.93

Supporting Information

Supporting Information File 1: Experimental details of electrochemical glycosylation, global deprotection, and NMR spectra of unknown compounds.
Format: PDF Size: 2.2 MB Download

Cite the Following Article

Total synthesis of TMG-chitotriomycin based on an automated electrochemical assembly of a disaccharide building block
Yuta Isoda, Norihiko Sasaki, Kei Kitamura, Shuji Takahashi, Sujit Manmode, Naoko Takeda-Okuda, Jun-ichi Tamura, Toshiki Nokami and Toshiyuki Itoh
Beilstein J. Org. Chem. 2017, 13, 919–924. https://doi.org/10.3762/bjoc.13.93

How to Cite

Isoda, Y.; Sasaki, N.; Kitamura, K.; Takahashi, S.; Manmode, S.; Takeda-Okuda, N.; Tamura, J.-i.; Nokami, T.; Itoh, T. Beilstein J. Org. Chem. 2017, 13, 919–924. doi:10.3762/bjoc.13.93

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 212.1 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ferry, A.; Gallier, F.; Gonzalez, S.; Lubin-Germain, N.; Soter de Mariz e Miranda, L.; Uziel, J. Enabling technologies applied to glycosylation. Carbohydrate Chemistry; Royal Society of Chemistry, 2024; pp 44–72. doi:10.1039/bk9781837672844-00044
  • Kashiwagi, G. A.; Petrosilli, L.; Escopy, S.; Lay, L.; Stine, K. J.; De Meo, C.; Demchenko, A. V. HPLC-Based Automated Synthesis and Purification of Carbohydrates. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202401214. doi:10.1002/chem.202401214
  • Li, J.; Zhang, Y.; Hu, Z.; Ye, J.; Cao, H. Chemoenzymatic Synthesis of N,N,N‐Trimethyl‐D‐Glucosamine Chitotriomycin and Its Analogues. Chinese Journal of Chemistry 2024, 42, 2293–2298. doi:10.1002/cjoc.202400345
  • RAHMAN, M. A.; TAKAHASHI, S.; SASAKI, N.; ITOH, T.; OHNUMA, T.; NOKAMI, T. Synthesis of Oligoglucosamine Analogues Containing the N,N,N-Trimethyl-d-glucosaminyl Unit by Automated Electrochemical Assembly. Electrochemistry 2023, 91, 112013. doi:10.5796/electrochemistry.23-67089
  • Hatch, C. E.; Chain, W. J. Electrochemically Enabled Total Syntheses of Natural Products. ChemElectroChem 2023, 10. doi:10.1002/celc.202300140
  • Rahman, M. A.; Kuroda, K.; Endo, H.; Sasaki, N.; Hamada, T.; Sakai, H.; Nokami, T. Synthesis of protected precursors of chitin oligosaccharides by electrochemical polyglycosylation of thioglycosides. Beilstein journal of organic chemistry 2022, 18, 1133–1139. doi:10.3762/bjoc.18.117
  • Escopy, S.; Singh, Y.; Stine, K. J.; Demchenko, A. V. HPLC-Based Automated Synthesis of Glycans in Solution. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202201180. doi:10.1002/chem.202201180
  • Endo, H.; Rahman, M. A.; Nokami, T. A Sugar Machine. Sustainable and Functional Redox Chemistry; The Royal Society of Chemistry, 2022; pp 80–98. doi:10.1039/9781839164828-00080
  • Zhang, Y.; Xiao, G. Chemical synthesis of TMG-chitotriomycin. Journal of Carbohydrate Chemistry 2021, 40, 327–338. doi:10.1080/07328303.2021.2009504
  • Karak, M.; Haldar, A.; Torikai, K. Current Tools for Chemical Glycosylation: Where Are We Now?. Trends in Glycoscience and Glycotechnology 2021, 33, E115–E123. doi:10.4052/tigg.2014.7e
  • Milandip, K.; Animeshchandra, H.; 浩平, 鳥. 化学的グリコシル化のための最新ツール:我々は、今どこまで来ているか?. Trends in Glycoscience and Glycotechnology 2021, 33, J115–J123. doi:10.4052/tigg.2014.7j
  • Yano, K.; Sasaki, N.; Itoh, T.; Nokami, T. Synthesis of Oligosaccharides of Glucosamine by Automated Electrochemical Assembly. Journal of Synthetic Organic Chemistry, Japan 2021, 79, 839–848. doi:10.5059/yukigoseikyokaishi.79.839
  • Rahman, A.; Yano, K.; Manmode, S.; Isoda, Y.; Sasaki, N.; Itoh, T.; Nokami, T. Electrochemical Synthesis of Oligosaccharides as Middle-Sized Molecules. Middle Molecular Strategy; Springer Singapore, 2021; pp 127–137. doi:10.1007/978-981-16-2458-2_8
  • Shibuya, A.; Nokami, T. Electrochemical Assembly for Synthesis of Middle-Sized Organic Molecules. Chemical record (New York, N.Y.) 2021, 21, 2389–2396. doi:10.1002/tcr.202100085
  • He, H.; Xu, L.; Sun, R.; Zhang, Y.; Huang, Y.; Chen, Z.; Li, P.; Yang, R.; Xiao, G. An orthogonal and reactivity-based one-pot glycosylation strategy for both glycan and nucleoside synthesis: access to TMG-chitotriomycin, lipochitooligosaccharides and capuramycin. Chemical science 2021, 12, 5143–5151. doi:10.1039/d0sc06815b
  • DeYong, A. E.; Rudich, M. L.; Pohl, N. L. B. Comprehensive Glycoscience - Synthesis of Carbohydrate Building Blocks for Automated Oligosaccharide Construction. Comprehensive Glycoscience; Elsevier, 2021; pp 637–659. doi:10.1016/b978-0-12-819475-1.00109-7
  • Oscarson, S.; Cheallaigh, A. N. Comprehensive Glycoscience - Strategies in Oligosaccharide Synthesis. Comprehensive Glycoscience; Elsevier, 2021; pp 1–48. doi:10.1016/b978-0-12-819475-1.00075-4
  • Morimoto, Y.; Takahashi, S.; Isoda, Y.; Nokami, T.; Fukamizo, T.; Suginta, W.; Ohnuma, T. Kinetic and thermodynamic insights into the inhibitory mechanism of TMG-chitotriomycin on Vibrio campbellii GH20 exo-β-N-acetylglucosaminidase. Carbohydrate research 2020, 499, 108201. doi:10.1016/j.carres.2020.108201
  • Hao, W.; Kecheng, L.; Li, P. Review: Advances in preparation of chitooligosaccharides with heterogeneous sequences and their bioactivity. Carbohydrate polymers 2020, 252, 117206. doi:10.1016/j.carbpol.2020.117206
  • Yano, K.; Itoh, T.; Nokami, T. Total synthesis of Myc-IV(C16:0, S) via automated electrochemical assembly. Carbohydrate research 2020, 492, 108018. doi:10.1016/j.carres.2020.108018
Other Beilstein-Institut Open Science Activities