Cite the Following Article
Hypervalent organoiodine compounds: from reagents to valuable building blocks in synthesis
Gwendal Grelier, Benjamin Darses and Philippe Dauban
Beilstein J. Org. Chem. 2018, 14, 1508–1528.
https://doi.org/10.3762/bjoc.14.128
How to Cite
Grelier, G.; Darses, B.; Dauban, P. Beilstein J. Org. Chem. 2018, 14, 1508–1528. doi:10.3762/bjoc.14.128
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 180.0 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Yoshimura, A.; Zhdankin, V. V. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chemical reviews 2024, 124, 11108–11186. doi:10.1021/acs.chemrev.4c00303
- Gulder, T.; Arnold, A. M.; Binder, J.; Kretzschmar, M. Alkene versus Aryl Chlorination in Asymmetric Hypervalent Iodine Catalysis: A Case Study. Synlett 2023, 35, 1001–1006. doi:10.1055/a-2201-7326
- Nabar, K. U.; Bhanage, B. M.; Dawande, S. G. Copper-catalyzed N-arylation of amines with aryliodonium ylides in water. Beilstein journal of organic chemistry 2023, 19, 1008–1014. doi:10.3762/bjoc.19.76
- Le Du, E.; Waser, J. Recent progress in alkynylation with hypervalent iodine reagents. Chemical communications (Cambridge, England) 2023, 59, 1589–1604. doi:10.1039/d2cc06168f
- Peng, X.; Rahim, A.; Peng, W.; Jiang, F.; Gu, Z.; Wen, S. Recent Progress in Cyclic Aryliodonium Chemistry: Syntheses and Applications. Chemical reviews 2023, 123, 1364–1416. doi:10.1021/acs.chemrev.2c00591
- Shetgaonkar, S. E.; Raju, A.; China, H.; Takenaga, N.; Dohi, T.; Singh, F. V. Non-Palladium-Catalyzed Oxidative Coupling Reactions Using Hypervalent Iodine Reagents. Frontiers in chemistry 2022, 10, 909250. doi:10.3389/fchem.2022.909250
- Li, G.; Smith, R.; Gembicky, M.; Rheingold, A. L.; Protasiewicz, J. D. Sterically crowded 1,4-diiodobenzene as a precursor to difunctional hypervalent iodine compounds. Chemical communications (Cambridge, England) 2022, 58, 1159–1162. doi:10.1039/d1cc06486j
- Bosnidou, A. E.; Romero, R. M. doi:10.1002/9783527829569.ch5
- 周, 德. Preparation and Application of Hydroxy(sulfonyloxy)iodoarenes. Hans Journal of Chemical Engineering and Technology 2022, 12, 133–141. doi:10.12677/hjcet.2022.123019
- Zhifang, Y.; Yifu, C.; Beibei, Z.; Yunyi, D.; Chi, H.; Yunfei, D. Oxidative Rearrangement Reactions Mediated by Hypervalent-Iodine Reagents. Chinese Journal of Organic Chemistry 2022, 42, 3456. doi:10.6023/cjoc202206039
- Boelke, A.; Sadat, S.; Lork, E.; Nachtsheim, B. J. Pseudocyclic bis-N-heterocycle-stabilized iodanes - synthesis, characterization and applications. Chemical communications (Cambridge, England) 2021, 57, 7434–7437. doi:10.1039/d1cc03097c
- Shibata, K.; Takao, K. I.; Ogura, A. Diaryliodonium Salt-Based Synthesis of N-Alkoxyindolines and Further Insights into the Ishikawa Indole Synthesis. The Journal of organic chemistry 2021, 86, 10067–10087. doi:10.1021/acs.joc.1c00820
- Pace, D. P.; Robidas, R.; Tran, U. P. N.; Legault, C. Y.; Nguyen, T. V. Iodine-Catalyzed Synthesis of Substituted Furans and Pyrans: Reaction Scope and Mechanistic Insights. The Journal of organic chemistry 2021, 86, 8154–8171. doi:10.1021/acs.joc.1c00608
- Li, G.; Rheingold, A. L.; Protasiewicz, J. D. Remote Substituents as Potential Control Elements for the Solid-State Structures of Hypervalent Iodine(III) Compounds. Inorganic chemistry 2021, 60, 7865–7875. doi:10.1021/acs.inorgchem.1c00339
- Antonkin, N. S.; Vlasenko, Y. A.; Yoshimura, A.; Smirnov, V. I.; Borodina, T. N.; Zhdankin, V. V.; Yusubov, M. S.; Shafir, A.; Postnikov, P. S. Preparation and Synthetic Applicability of Imidazole-Containing Cyclic Iodonium Salts. The Journal of organic chemistry 2021, 86, 7163–7178. doi:10.1021/acs.joc.1c00483
- Das, M.; Rodriguez, A.; Lo, P. K. T.; Moran, W. J. Synthesis of Oxazolidinones by a Hypervalent Iodine Mediated Cyclization of N-Allylcarbamates. Advanced Synthesis & Catalysis 2021, 363, 1646–1650. doi:10.1002/adsc.202001451
- Declas, N.; Pisella, G.; Waser, J. Vinylbenziodoxol(on)es: Synthetic Methods and Applications. Helvetica Chimica Acta 2020, 103. doi:10.1002/hlca.202000191
- Chen, W. W.; Cunillera, A.; Chen, D.; Lethu, S.; López de Moragas, A.; Zhu, J.; Solà, M.; Cuenca, A. B.; Shafir, A. Iodane‐Guided ortho C−H Allylation. Angewandte Chemie 2020, 132, 20376–20382. doi:10.1002/ange.202009369
- Boelke, A.; Kuczmera, T. J.; Caspers, L. D.; Lork, E.; Nachtsheim, B. J. Iodolopyrazolium Salts: Synthesis, Derivatizations, and Applications. Organic letters 2020, 22, 7261–7266. doi:10.1021/acs.orglett.0c02593
- Chen, W. W.; Cunillera, A.; Chen, D.; Lethu, S.; de Moragas, A. L.; Zhu, J.; Solà, M.; Cuenca, A. B.; Shafir, A. Iodane‐Guided ortho C−H Allylation. Angewandte Chemie (International ed. in English) 2020, 59, 20201–20207. doi:10.1002/anie.202009369