Supporting Information
| Supporting Information File 1: Cartesian coordinates, energies of all calculated structures, and details of computational methods. | ||
| Format: PDF | Size: 2.5 MB | Download |
Cite the Following Article
Cobalt-catalyzed C–H cyanations: Insights into the reaction mechanism and the role of London dispersion
Eric Detmar, Valentin Müller, Daniel Zell, Lutz Ackermann and Martin Breugst
Beilstein J. Org. Chem. 2018, 14, 1537–1545.
https://doi.org/10.3762/bjoc.14.130
How to Cite
Detmar, E.; Müller, V.; Zell, D.; Ackermann, L.; Breugst, M. Beilstein J. Org. Chem. 2018, 14, 1537–1545. doi:10.3762/bjoc.14.130
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 196.7 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Atsumi, S.; Nosaka, C.; Onodera, T.; Adachi, H.; Watanabe, T.; Kawada, M.; Shibuya, M.; Park, S. I.; Kwon, H. J. Enhanced Anticancer Activity of 7MeERT over Ertredin: A Comparative Study on Cancer Cell Proliferation and NDUFA12 Binding. Biomolecules 2024, 14, 1197. doi:10.3390/biom14091197
- Rummel, L.; Schreiner, P. R. Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angewandte Chemie 2024, 136. doi:10.1002/ange.202316364
- Rummel, L.; Schreiner, P. R. Advances and Prospects in Understanding London Dispersion Interactions in Molecular Chemistry. Angewandte Chemie (International ed. in English) 2024, 63, e202316364. doi:10.1002/anie.202316364
- de Carvalho, R. L.; Diogo, E. B. T.; Homölle, S. L.; Dana, S.; da Silva Júnior, E. N.; Ackermann, L. The crucial role of silver(I)-salts as additives in C-H activation reactions: overall analysis of their versatility and applicability. Chemical Society reviews 2023, 52, 6359–6378. doi:10.1039/d3cs00328k
- Yuan, B.; Oliveira, J. C. A.; Ackermann, L. Understanding and Describing London Dispersion Effects in Transition-Metal-Catalyzed C–H Activations. Synlett 2023, 34, 1098–1112. doi:10.1055/a-2060-3288
- Rösel, S.; Schreiner, P. R. Computational Chemistry as a Conceptual Game Changer: Understanding the Role of London Dispersion in Hexaphenylethane Derivatives (Gomberg Systems). Israel Journal of Chemistry 2022, 62. doi:10.1002/ijch.202200002
- Gonzalez-Gomez, J. C.; Alonso, F. Organic Reaction Mechanisms Series; Wiley, 2021; pp 513–551. doi:10.1002/9781119531975.ch13
- Ikawa, T.; Yamamoto, Y.; Heguri, A.; Fukumoto, Y.; Murakami, T.; Takagi, A.; Masuda, Y.; Yahata, K.; Aoyama, H.; Shigeta, Y.; Tokiwa, H.; Akai, S. Could London Dispersion Force Control Regioselective (2 + 2) Cyclodimerizations of Benzynes? YES: Application to the Synthesis of Helical Biphenylenes. Journal of the American Chemical Society 2021, 143, 10853–10859. doi:10.1021/jacs.1c05434
- Pal, P.; Mondal, S.; Chatterjee, A.; Saha, R.; Chakrabarty, K.; Das, G. K. Revisited the mechanism of cobalt(III) catalyzed cyanation of arenes and heteroarenes: A DFT study. Computational and Theoretical Chemistry 2021, 1201, 113289. doi:10.1016/j.comptc.2021.113289
- Aniban, X.; Hartwig, B.; Wuttke, A.; Mata, R. A. Dispersion forces in chirality recognition – a density functional and wave function theory study of diols. Physical chemistry chemical physics : PCCP 2021, 23, 12093–12104. doi:10.1039/d1cp01225h
- Wu, F.; Deraedt, C.; Cornaton, Y.; Contreras-García, J.; Boucher, M.; Karmazin, L.; Bailly, C.; Djukic, J.-P. Making Base-Assisted C–H Bond Activation by Cp*Co(III) Effective: A NoncovalentInteraction-Inclusive Theoretical Insight and Experimental Validation. Organometallics 2020, 39, 2609–2629. doi:10.1021/acs.organomet.0c00253
- Giese, M.; Albrecht, M. Alkyl-Alkyl Interactions in the Periphery of Supramolecular Entities: From the Evaluation of Weak Forces to Applications. ChemPlusChem 2020, 85, 715–724. doi:10.1002/cplu.202000077
- Schlottmann, M.; Van Craen, D.; Baums, J.; Funes-Ardoiz, I.; Wiederhold, C.; Oppel, I. M.; Albrecht, M. Stability of Hierarchically Formed Titanium(IV) Tris(catecholate ester) Helicates with Cyclohexyl Substituents in DMSO. Inorganic chemistry 2020, 59, 1758–1762. doi:10.1021/acs.inorgchem.9b02988
- Holtrop, F.; Visscher, K. W.; Jupp, A. R.; Slootweg, J. C. Steric attraction: A force to be reckoned with. Advances in Physical Organic Chemistry; Elsevier, 2020; Vol. 54, pp 119–141. doi:10.1016/bs.apoc.2020.08.001
- Strauss, M. A.; Wegner, H. A. Evaluierung von London‐Dispersions‐ und Lösungsmittel‐Interaktionen an Alkyl‐Alkyl‐Grenzflächen mittels Azobenzolschaltern. Angewandte Chemie 2019, 131, 18724–18729. doi:10.1002/ange.201910734
- Strauss, M. A.; Wegner, H. A. Exploring London Dispersion and Solvent Interactions at Alkyl-Alkyl Interfaces Using Azobenzene Switches. Angewandte Chemie (International ed. in English) 2019, 58, 18552–18556. doi:10.1002/anie.201910734
- Uchida, K.; Togo, H. Transformation of aromatic bromides into aromatic nitriles with n-BuLi, pivalonitrile, and iodine under metal cyanide-free conditions. Tetrahedron 2019, 75, 130550. doi:10.1016/j.tet.2019.130550
- Lu, Q.; Neese, F.; Bistoni, G. London dispersion effects in the coordination and activation of alkanes in σ-complexes: a local energy decomposition study. Physical chemistry chemical physics : PCCP 2019, 21, 11569–11577. doi:10.1039/c9cp01309a