Synthesis of pyrimido[1,6-a]quinoxalines via intermolecular trapping of thermally generated acyl(quinoxalin-2-yl)ketenes by Schiff bases

  1. ORCID Logo ,
  2. ORCID Logo ,
  3. ,
  4. and
  5. ORCID Logo
Department of Chemistry, Perm State University, ul. Bukireva 15, Perm 614990, Russian Federation
  1. Corresponding author email
Associate Editor: T. J. J. Müller
Beilstein J. Org. Chem. 2018, 14, 1734–1742. https://doi.org/10.3762/bjoc.14.147
Received 06 Apr 2018, Accepted 26 Jun 2018, Published 11 Jul 2018
Full Research Paper
cc by logo

Abstract

Acyl(quinoxalin-2-yl)ketenes generated by thermal decarbonylation of 3-acylpyrrolo[1,2-a]quinoxaline-1,2,4(5H)-triones react regioselectively with Schiff bases under solvent-free conditions to form pyrimido[1,6-a]quinoxaline derivatives in good yields.

Introduction

Quinoxaline is a 4-aza isostere of quinoline, which rarely occurs in structures of natural products. Its derivatives are gaining popularity in medicinal chemistry and pharmacology because many of them exhibit various biological activities [1,2].

Quinoxaline-based 6/6/6-angularly fused scaffolds (quinoxaline fused by a six-membered heterocycle at the [a]-side) are promising biologically active compounds. Recent research studies revealed that they can act as inhibitors of poly(ADP-ribose) polymerase (PARP) [3], inhibitors of hepatitis C virus [4], 5-HT2C agonists [5-7], substances for controlling intraocular pressure (IOP) [8] etc. (Figure 1).

[1860-5397-14-147-1]

Figure 1: Quinoxaline-based 6/6/6-angularly fused scaffolds and respective examples of biologically active compounds.

Pyrimido[1,6-a]quinoxalines are one of the most intriguing and unexplored structures representing isosteres of this scaffold. Only few synthetic procedures towards these compounds are described in the literature: heterocyclizations of α-chloroisocyanates with quinoxalin-2-ylideneacetates [9], multicomponent Mannich–Ritter transformations of quinoxalin-2(1H)-ones under the action of nitriles and 3,4-dihydro-2H-pyran [10] and a microwave-assisted cascade strategy via in situ-generated N-acyliminium ion precursors and amines [11] (Figure 2).

[1860-5397-14-147-2]

Figure 2: Synthetic routes towards the pyrimido[1,6-a]quinoxaline scaffold.

To develop a new synthetic approach towards pyrimido[1,6-a]quinoxalines we looked through the procedures to their closest analogues – pyrido[1,2-a]quinoxalines, the synthesis of which has been explored more frequently [3,4,12-46]. The analysis helped us to disclose a tempting but challenging methodology, which has the potential to be extended for the synthesis of the desired heterocyclic system, via intermolecular trapping of thermally generated acyl(quinoxalin-2-yl)ketenes [20,21,23,24,28,29,38] (Figure 2).

Syntheses utilizing acylketenes are of practical and theoretical interest due to the high reactivity of acylketenes and the structural diversity of the reaction products [47-54]. The introduction of the quinoxalin-2-yl substituent into acylketenes results in the formation of a peculiar system of conjugated double bonds, which can potentially act as either oxo-diene or aza-diene (Figure 3).

[1860-5397-14-147-3]

Figure 3: Acyl(quinoxalin-2-yl)ketene.

To the best of our knowledge, there is no example of the involvement of the aza-diene fragment of acyl(quinoxalin-2-yl)ketenes into intermolecular trapping by hetero-dienophiles published so far. In this article we report a synthetic protocol towards pyrimido[1,6-a]quinoxalines via the intermolecular trapping of acyl(quinoxalin-2-yl)ketenes by Schiff bases.

Results and Discussion

The most convenient method for the generation of acyl(quinoxalin-2-yl)ketenes is the thermal decarbonylation (thermolysis) of five-membered 2,3-dioxoheterocycles having a quinoxaline fragment. Currently, three types of such precursors are known: 5-aryl-4-quinoxalin-2-ylfuran-2,3-diones I [21], 3-aroyl-4-arylpyrrolo[1,2-a]quinoxaline-1,2-diones II [55], and 3-acylpyrrolo[1,2-a]quinoxaline-1,2,4(5H)-triones III [23,56] (Scheme 1).

[1860-5397-14-147-i1]

Scheme 1: Thermolysis of five-membered 2,3-dioxoheterocycles resulting in acyl(quinoxalin-2-yl)ketenes.

According to the literature data, precursors I and II are unsuitable for achieving the proposed goal as the generated ketene IV reacts only at its oxo-diene fragment in intermolecular trapping reactions with various dienophiles [57-62]. Under these circumstances precursors III generating ketenes V seemed to be the only suitable candidates for the development of a strategy towards pyrimido[1,6-a]quinoxalines.

First, we studied the decarbonylation of precursors III – 3-acylpyrrolo[1,2-a]quinoxaline-1,2,4(5H)-triones (PQTs, 1ah) by simultaneous thermal analysis (STA, Table 1). According to the data obtained, PQTs 1ah underwent thermal decomposition with a mass loss accompanied by an endothermic effect and CO evolution (Figure 4). The values of the mass loss corresponded to the elimination of a CO molecule from a PQT.

Table 1: Thermal characteristics of decarbonylation of PQTs 1ah.

PQT temp. of decarbonylation (°C)
  onset extrapolated onset peak
1a 187 207 216
1b 174 209 220
1c 173 183 206
1d 148 174 183
1e 172 204 217
1f 179 198 212
1g 184 203 213
1h 171 197 206
[1860-5397-14-147-4]

Figure 4: STA plot of thermolysis of PQT 1a. Blue solid curve: DSC; green solid curve: TG; greed dashed curve: DTG; violet solid curve: MID (m/z = 28); brown solid curve: MID (m/z = 44); heating rate: 5 °C/min.

Having taken into account the results of the thermal analysis, we examined the feasibility and conditions of the intermolecular reaction of the ketene generated from PQT 1a with benzalaniline (2a). The reaction mixtures obtained were investigated by UPLC–MS and the results are summarized in Table 2.

Table 2: Intermolecular trapping of ketene generated from PQT 1a by benzalaniline (2a)a.

[Graphic 1]
entry yield of 3a (%)b time (min) temp. (°C)
1 65 5 190
2 50 15 190
3 57 5 200
4 30 60 200
5 80 3 175
6 85c 2 187

aConditions: suspension of 1a (1 mmol) and 2a (1.1 mmol) in Dowtherm A (5 mL). bYields were determined by UPLC. cSolvent-free reaction.

The reaction mixtures contained only three types of products, and we succeeded to identify each of them. The structures of the reaction products were elucidated as the desired pyrimido[1,6-a]quinoxaline 3a, quinoxalinone 4a [29] and pyrido[1,2-a]quinoxaline 5a [29] (Scheme 2). Product IV of an alternative intermolecular trapping reaction (Table 1) was not detected.

[1860-5397-14-147-i2]

Scheme 2: Side-reactions concurring with intermolecular trapping of ketene generated from PQT 1a by benzalaniline (2a).

The most likely way of the formation of quinoxalinone 4a is hydration of the ketene with subsequent decarboxylation (Scheme 2); more careful drying the reaction vials and solvents easily reduced the amount of compound 4a.

The formation of pyrido[1,2-a]quinoxaline 5a can be explained by a concurrent process of ketene dimerization (Scheme 2) [29] in comparison to the intermolecular trapping of it by benzalaniline (2a). Since the yields of the target product 3a decreased and the yields of compound 5a increased at prolonged time of reaction, the formation of the target compounds deemed to be reversible.

Performing the reaction under solvent-free conditions at the onset decarbonylation temperature (Table 1) exceeded our expectations and gave the best yields of the target compound 3a (Table 2, entry 6).

Being inspired by the optimization results obtained, we examined the scope of the reaction applying the developed methodology with PQTs 1ah and Schiff bases 2ad. The results are shown in Figure 5.

[1860-5397-14-147-5]

Figure 5: Scope of the intermolecular trapping of ketenes generated from PQTs 1ah by Schiff bases 2ad under solvent-free conditions.

Unfortunately, our attempts to involve Schiff bases synthesized from aliphatic aldehydes and ketones did not give any satisfactory results because of various nucleophilic side-reactions.

We found that the intermolecular trapping worked perfectly in case of N5-substituted PQTs 1af and did not work at all with N5-unsubstituted PQT 1g and 1h. The failure to obtain products 3o and 3p from PQTs 1g and 1h can be explained by the occurrence of intramolecular cyclization in these ketenes resulting in the formation of furoquinoxalines 6a,b [56,63,64] which were confirmed by UPLC–MS data as the sole products of the reaction (Scheme 3).

[1860-5397-14-147-i3]

Scheme 3: Formation of furoquinoxalines 6a,b via intramolecular cyclization in ketenes generated from PQTs 1g,h.

The formation of pyrimido[1,6-a]quinoxalines 3an was unambiguously confirmed by the crystal structure of compounds 3g and 3j (CCDC 1834011, Figure 6; CCDC 1834012, Figure 7).

[1860-5397-14-147-6]

Figure 6: ORTEP drawing of compound 3g (CCDC 1834011) showing thermal ellipsoids at the 30% probability level.

[1860-5397-14-147-7]

Figure 7: ORTEP drawing of compound 3j (CCDC 1834012) showing thermal ellipsoids at the 30% probability level.

Conclusion

We have developed a facile synthesis of pyrimido[1,6-a]quinoxaline derivatives via the intermolecular trapping of thermally generated acyl(quinoxalin-2-yl)ketenes by Schiff bases. The reaction proceeds under solvent-free conditions without any additives and catalysts. The elaborated method might be applicable to the syntheses of pharmaceutically important substances.

Supporting Information

Supporting Information File 1: Experimental details, copies of 1H and 13C NMR spectra of pyrimido[1,6-a]quinoxalines 3an, STA plots of PQT 1ah and X-ray crystal structure details of compounds 3g,j.
Format: PDF Size: 2.5 MB Download

Acknowledgements

This work was supported by the Russian Science Foundation, project # 17-73-10210.

References

  1. Pereira, J. A.; Pessoa, A. M.; Cordeiro, M. N. D. S.; Fernandes, R.; Prudêncio, C.; Noronha, J. P.; Vieira, M. Eur. J. Med. Chem. 2015, 97, 664–672. doi:10.1016/j.ejmech.2014.06.058
    Return to citation in text: [1]
  2. Tariq, S.; Somakala, K.; Amir, M. Eur. J. Med. Chem. 2018, 143, 542–557. doi:10.1016/j.ejmech.2017.11.064
    Return to citation in text: [1]
  3. Miyashiro, J.; Woods, K. W.; Park, C. H.; Liu, X.; Shi, Y.; Johnson, E. F.; Bouska, J. J.; Olson, A. M.; Luo, Y.; Fry, E. H.; Giranda, V. L.; Penning, T. D. Bioorg. Med. Chem. Lett. 2009, 19, 4050–4054. doi:10.1016/j.bmcl.2009.06.016
    Return to citation in text: [1] [2]
  4. Liu, R.; Huang, Z.; Murray, M. G.; Guo, X.; Liu, G. J. Med. Chem. 2011, 54, 5747–5768. doi:10.1021/jm200394x
    Return to citation in text: [1] [2]
  5. Sabb, A. L.; Welmaker, G. S.; Nelson, J. A. 2,3,4,4a-Tetrahydro-1H-pyrazino(1,2-a)quinoxalin-5(6H)one derivates being 5HT2C agonists. WO Patent WO0035922 A1, June 6, 2000.
    Return to citation in text: [1]
  6. Rosenzweig-Lipson, S.; Zhang, J.; Mazandarani, H.; Harrison, B. L.; Sabb, A.; Sabalski, J.; Stack, G.; Welmaker, G.; Barrett, J. E.; Dunlop, J. Brain Res. 2006, 1073–1074, 240–251. doi:10.1016/j.brainres.2005.12.052
    Return to citation in text: [1]
  7. Hayes, D. J.; Mosher, T. M.; Greenshaw, A. J. Behav. Brain Res. 2009, 197, 323–330. doi:10.1016/j.bbr.2008.08.034
    Return to citation in text: [1]
  8. May, J. A.; Zinke, P. W. (R)-8,9-Dichloro-2,3,4,4a-tetrahydro-1H,6H-pyrazino[1,2-a]quinoxalin-5-one for controlling IOP and treating glaucoma. U.S. Patent US2006211700 A1, Sept 21, 2006.
    Return to citation in text: [1]
  9. Kushnir, O. V.; Vovk, M. V. Russ. J. Org. Chem. 2010, 46, 890–893. doi:10.1134/s1070428010060187
    Return to citation in text: [1]
  10. Preciado, S.; Vicente-García, E.; Llabrés, S.; Luque, F. J.; Lavilla, R. Angew. Chem. 2012, 124, 6980–6983. doi:10.1002/ange.201202927
    Return to citation in text: [1]
  11. Sawant, R. T.; Stevens, M. Y.; Sköld, C.; Odell, L. R. Org. Lett. 2016, 18, 5392–5395. doi:10.1021/acs.orglett.6b02774
    Return to citation in text: [1]
  12. Kappe, T.; Linnau, Y.; Stadlbauer, W. Monatsh. Chem. 1977, 108, 103–111. doi:10.1007/BF00900912
    Return to citation in text: [1]
  13. Ames, D. E.; Brohi, M. I. J. Chem. Soc., Perkin Trans. 1 1980, 1384–1389. doi:10.1039/p19800001384
    Return to citation in text: [1]
  14. Adegoke, E. A.; Alo, B. J. Heterocycl. Chem. 1983, 20, 1509–1512. doi:10.1002/jhet.5570200614
    Return to citation in text: [1]
  15. Chernavskaya, L. N.; Kholodova, N. V.; Blagorodov, S. G.; Dmitrieva, N. A. Pharm. Chem. J. 1984, 18, 413–416. doi:10.1007/BF00776797
    Return to citation in text: [1]
  16. Kurasawa, Y.; Nemoto, Y.; Sakakura, A.; Ogura, M.; Takada, A. Chem. Pharm. Bull. 1984, 32, 3366–3372. doi:10.1248/cpb.32.3366
    Return to citation in text: [1]
  17. Kawahara, N.; Shimamori, T.; Itoh, T.; Takayanagi, H.; Ogura, H. Chem. Pharm. Bull. 1987, 35, 457–467. doi:10.1248/cpb.35.457
    Return to citation in text: [1]
  18. Kawahara, N.; Shimamori, T.; Itoh, T.; Takayanagi, H.; Ogura, H. J. Heterocycl. Chem. 1989, 26, 847–852. doi:10.1002/jhet.5570260362
    Return to citation in text: [1]
  19. Öcal, N.; Turgut, Z.; Kaban, Ş. J. Heterocycl. Chem. 1998, 35, 1349–1351. doi:10.1002/jhet.5570350620
    Return to citation in text: [1]
  20. Maslivets, A. N.; Golovnina, O. V.; Krasnykh, O. P.; Aliev, Z. G. Chem. Heterocycl. Compd. 2000, 36, 615–616. doi:10.1007/bf02290858
    Return to citation in text: [1] [2]
  21. Lisovenko, N. Y.; Krasnykh, O. P.; Aliev, Z. G.; Vostrov, E. S.; Tarasova, O. P.; Maslivets, A. N. Chem. Heterocycl. Compd. 2001, 37, 1314–1316. doi:10.1023/A:1013886602711
    Return to citation in text: [1] [2] [3]
  22. Duffy, K. J.; Haltiwanger, R. C.; Freyer, A. J.; Li, F.; Luengo, J. I.; Cheng, H.-Y. J. Chem. Soc., Perkin Trans. 2 2002, 181–185. doi:10.1039/b102755g
    Return to citation in text: [1]
  23. Maslivets, A. N.; Bozdyreva, K. S.; Smirnova, I. V.; Tolmacheva, I. A.; Mashevskaya, I. V. Chem. Heterocycl. Compd. 2002, 38, 498–499. doi:10.1023/A:1016056011167
    Return to citation in text: [1] [2] [3]
  24. Maslivets, A. N.; Lisovenko, N. Y.; Krasnykh, O. P.; Tarasova, O. P.; Aliev, Z. G.; Atovmyan, L. O. Russ. Chem. Bull. 2002, 51, 850–853. doi:10.1023/A:1016097120253
    Return to citation in text: [1] [2]
  25. García, M. B.; Orelli, L. R.; Magri, M. L.; Perillo, I. A. Synthesis 2002, 2687–2690. doi:10.1055/s-2002-35980
    Return to citation in text: [1]
  26. Bunce, R. A.; Herron, D. M.; Hale, L. Y. J. Heterocycl. Chem. 2003, 40, 1031–1039. doi:10.1002/jhet.5570400611
    Return to citation in text: [1]
  27. Chicharro, R.; de Castro, S.; Reino, J. L.; Arán, V. J. Eur. J. Org. Chem. 2003, 2314–2326. doi:10.1002/ejoc.200300028
    Return to citation in text: [1]
  28. Maslivets, A. N.; Aliev, Z. G.; Krasnykh, O. P.; Golovnina, O. V.; Atovmyan, L. O. Chem. Heterocycl. Compd. 2004, 40, 1295–1299. doi:10.1007/s10593-005-0060-4
    Return to citation in text: [1] [2]
  29. Bozdyreva, K. S.; Smirnova, I. V.; Maslivets, A. N. Russ. J. Org. Chem. 2005, 41, 1081–1088. doi:10.1007/s11178-005-0296-6
    Return to citation in text: [1] [2] [3] [4] [5]
  30. Ma, Y.; Luo, W.; Camplo, M.; Liu, Z.; Hider, R. C. Bioorg. Med. Chem. Lett. 2005, 15, 3450–3452. doi:10.1016/j.bmcl.2005.05.010
    Return to citation in text: [1]
  31. Tanimori, S.; Nishimura, T.; Kirihata, M. Bioorg. Med. Chem. Lett. 2009, 19, 4119–4121. doi:10.1016/j.bmcl.2009.06.007
    Return to citation in text: [1]
  32. Yavari, I.; Souri, S.; Sirouspour, M.; Bayat, M. J. Synlett 2009, 1921–1922. doi:10.1055/s-0029-1217542
    Return to citation in text: [1]
  33. Luo, X.; Chenard, E.; Martens, P.; Cheng, Y.-X.; Tomaszewski, M. J. Org. Lett. 2010, 12, 3574–3577. doi:10.1021/ol101454x
    Return to citation in text: [1]
  34. Xu, L.; Jiang, Y.; Ma, D. Synlett 2010, 2285–2288. doi:10.1055/s-0030-1258030
    Return to citation in text: [1]
  35. Tanimori, S.; Kashiwagi, H.; Nishimura, T.; Kirihata, M. Adv. Synth. Catal. 2010, 352, 2531–2537. doi:10.1002/adsc.201000323
    Return to citation in text: [1]
  36. Gulevskaya, A. V.; Nguyen, H. T. L.; Tyaglivy, A. S.; Pozharskii, A. F. Tetrahedron 2012, 68, 488–498. doi:10.1016/j.tet.2011.11.018
    Return to citation in text: [1]
  37. Xu, Z.; De Moliner, F.; Cappelli, A. P.; Hulme, C. Org. Lett. 2013, 15, 2738–2741. doi:10.1021/ol401068u
    Return to citation in text: [1]
  38. Lisovenko, N. Y.; Yukova, Y. V.; Makhmudov, R. R. Pharm. Chem. J. 2014, 47, 593–595. doi:10.1007/s11094-014-1014-x
    Return to citation in text: [1] [2]
  39. Nguyen, H. T. L.; Gulevskaya, A. V.; Pozharskii, A. F.; Nelina-Nemtseva, J. I. Tetrahedron 2014, 70, 4617–4625. doi:10.1016/j.tet.2014.05.023
    Return to citation in text: [1]
  40. Obydennov, D. L.; Sosnovskikh, V. Y. Chem. Heterocycl. Compd. 2014, 50, 579–582. doi:10.1007/s10593-014-1510-7
    Return to citation in text: [1]
  41. Tanimori, S.; Inaba, U.; Kato, Y.; Ura, H.; Kashiwagi, H.; Nishimura, T.; Kirihata, M. Res. Chem. Intermed. 2014, 40, 2157–2164. doi:10.1007/s11164-014-1593-x
    Return to citation in text: [1]
  42. Miyamaru, S.; Umezu, K.; Ito, A.; Shimizu, M. Eur. J. Org. Chem. 2015, 3327–3337. doi:10.1002/ejoc.201500225
    Return to citation in text: [1]
  43. Rezvanian, A. Tetrahedron 2016, 72, 6428–6435. doi:10.1016/j.tet.2016.08.049
    Return to citation in text: [1]
  44. Azev, Y. A.; Kodess, M. I.; Ezhikova, M. A.; Ermakova, O. S.; Berseneva, V. S.; Bakulev, V. A. Mendeleev Commun. 2017, 27, 97–98. doi:10.1016/j.mencom.2017.01.032
    Return to citation in text: [1]
  45. Azev, Y. A.; Ermakova, O. S.; Berseneva, V. S.; Kodess, M. I.; Ezhikova, M. A.; Ganebnykh, I. N. Mendeleev Commun. 2017, 27, 637–639. doi:10.1016/j.mencom.2017.11.034
    Return to citation in text: [1]
  46. Soozani, A.; Keivanloo, A.; Bakherad, M. Tetrahedron 2018, 74, 150–156. doi:10.1016/j.tet.2017.11.055
    Return to citation in text: [1]
  47. Reber, K. P.; Tilley, S. D.; Sorensen, E. J. Chem. Soc. Rev. 2009, 38, 3022–3034. doi:10.1039/B912599J
    Return to citation in text: [1]
  48. Presset, M.; Coquerel, Y.; Rodriguez, J. Org. Lett. 2009, 11, 5706–5709. doi:10.1021/ol9024056
    Return to citation in text: [1]
  49. Presset, M.; Coquerel, Y.; Rodriguez, J. Org. Lett. 2010, 12, 4212–4215. doi:10.1021/ol101938r
    Return to citation in text: [1]
  50. Leber, S.; Kollenz, G.; Wentrup, C. Beilstein J. Org. Chem. 2012, 8, 738–743. doi:10.3762/bjoc.8.83
    Return to citation in text: [1]
  51. Galvez, J.; Castillo, J.-C.; Quiroga, J.; Rajzmann, M.; Rodriguez, J.; Coquerel, Y. Org. Lett. 2014, 16, 4126–4129. doi:10.1021/ol5018245
    Return to citation in text: [1]
  52. Khlebnikov, A. F.; Novikov, M. S.; Pakalnis, V. V.; Iakovenko, R. O.; Yufit, D. S. Beilstein J. Org. Chem. 2014, 10, 784–793. doi:10.3762/bjoc.10.74
    Return to citation in text: [1]
  53. Cookson, R.; Barrett, T. N.; Barrett, A. G. M. Acc. Chem. Res. 2015, 48, 628–642. doi:10.1021/ar5004169
    Return to citation in text: [1]
  54. Kollenz, G.; Wentrup, C. Beilstein J. Org. Chem. 2018, 14, 1–10. doi:10.3762/bjoc.14.1
    Return to citation in text: [1]
  55. Silaichev, P. S.; Maslivets, A. N. Russ. J. Org. Chem. 2012, 48, 1261–1262. doi:10.1134/S1070428012090229
    Return to citation in text: [1]
  56. Mashevskaya, I. V.; Mokrushin, I. G.; Bozdyreva, K. S.; Maslivets, A. N. Russ. J. Org. Chem. 2011, 47, 253–257. doi:10.1134/S1070428011020151
    Return to citation in text: [1] [2]
  57. Lisovenko, N. Y.; Maslivets, A. N.; Aliev, Z. G. Chem. Heterocycl. Compd. 2003, 39, 132–134. doi:10.1023/A:1023097414711
    Return to citation in text: [1]
  58. Lisovenko, N. Y.; Maslivets, A. N. Chem. Heterocycl. Compd. 2004, 40, 247–248. doi:10.1023/B:COHC.0000027901.78882.86
    Return to citation in text: [1]
  59. Lisovenko, N. Y.; Maslivets, A. N.; Aliev, Z. G. Russ. J. Org. Chem. 2004, 40, 1053–1057. doi:10.1023/B:RUJO.0000045203.69639.83
    Return to citation in text: [1]
  60. Lisovenko, N. Y.; Maslivets, A. N.; Aliev, Z. G. Russ. J. Org. Chem. 2007, 43, 117–120. doi:10.1134/s1070428007010150
    Return to citation in text: [1]
  61. Nekrasov, D. D.; Obukhova, A. S.; Lisovenko, N. Y.; Roubtsov, A. E. Chem. Heterocycl. Compd. 2010, 46, 413–418. doi:10.1007/s10593-010-0525-y
    Return to citation in text: [1]
  62. Lisovenko, N. Y.; Nekrasov, D. D.; Karmanov, V. I. Chem. Heterocycl. Compd. 2012, 48, 1357–1360. doi:10.1007/s10593-012-1144-6
    Return to citation in text: [1]
  63. Masilvets, A. N.; Golovnina, O. V.; Krasnykh, O. P.; Aliev, Z. G. Chem. Heterocycl. Compd. 2000, 36, 355–356. doi:10.1007/BF02256878
    Return to citation in text: [1]
  64. Aliev, Z. G.; Maslivets, A. N.; Golovnina, O. V.; Krasnykh, O. P.; Atovmyan, L. O. Russ. Chem. Bull. 2001, 50, 1317–1319. doi:10.1023/A:1014091731016
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities