Supporting Information
Supporting Information File 1: Experimental part. | ||
Format: PDF | Size: 767.4 KB | Download |
Cite the Following Article
Strong binding and fluorescence sensing of bisphosphonates by guanidinium-modified calix[5]arene
Jie Gao, Zhe Zheng, Lin Shi, Si-Qi Wu, Hongwei Sun and Dong-Sheng Guo
Beilstein J. Org. Chem. 2018, 14, 1840–1845.
https://doi.org/10.3762/bjoc.14.157
How to Cite
Gao, J.; Zheng, Z.; Shi, L.; Wu, S.-Q.; Sun, H.; Guo, D.-S. Beilstein J. Org. Chem. 2018, 14, 1840–1845. doi:10.3762/bjoc.14.157
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 456.5 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Rather, I. A.; Ali, R. Fluorescence Indicator Displacement Assays (FIDAs). Indicator Displacement Assays (IDAs): An Innovative Molecular Sensing Approach; BENTHAM SCIENCE PUBLISHERS, 2024; pp 60–90. doi:10.2174/9789815165913124010005
- Pan, Y.-C.; Tian, J.-H.; Guo, D.-S. Molecular Recognition with Macrocyclic Receptors for Application in Precision Medicine. Accounts of chemical research 2023, 56, 3626–3639. doi:10.1021/acs.accounts.3c00585
- Duan, Q.; Wang, F.; Lu, K. Recent advances in macrocyclic arenes-based fluorescent indicator displacement assays. Frontiers in chemistry 2022, 10, 973313. doi:10.3389/fchem.2022.973313
- Yu, X.; Liang, T.-H.; Wang, M.; Ren, X.-L.; Zhou, Z.-Y.; Jiang, M.-M.; Zhang, D.-Q. An innovative extraction strategy for herbal medicine by adopting p-sulphonatocalix[6]/[8]arenes. Phytochemical analysis : PCA 2022, 33, 1068–1085. doi:10.1002/pca.3160
- Yu, X.; Chen, M.-L.; Liu, Y.; Li, C.-H.; Qiu, X.-L.; Ren, X.-L.; Wang, M.; Zhang, D.-Q. An eco-friendly extraction and purification method of nuciferine from Folium nelumbinis with p-sulfonatocalix[6]arenes. Phytochemical analysis : PCA 2022, 33, 543–553. doi:10.1002/pca.3108
- Rather, I. A.; Ali, R. Indicator displacement assays: from concept to recent developments. Organic & biomolecular chemistry 2021, 19, 5926–5981. doi:10.1039/d1ob00518a
- Alizada, M.; Gul, A.; Oguz, M.; Kursunlu, A. N.; Yilmaz, M. Ion sensing of sister sensors based-on calix[4]arene in aqueous medium and their bioimaging applications. Dyes and Pigments 2021, 184, 108741. doi:10.1016/j.dyepig.2020.108741
- Yu, X.; Chen, M.-l.; Liu, Y.; Li, C.-h.; Qiu, X.-l.; Ren, X.; Wang, M.; Zhang, D.-q. An Eco-Friendly Extraction and Purification Method of Nuciferine From Folium Nelumbinis Assisted With P-Sulfonatocalix[6]Arenes. SSRN Electronic Journal 2021. doi:10.2139/ssrn.3914869
- Pan, Y.-C.; Hu, X.-Y.; Guo, D.-S. Biomedizinische Anwendungen von Calixarenen: Stand der Wissenschaft und Perspektiven. Angewandte Chemie 2020, 133, 2800–2828. doi:10.1002/ange.201916380
- Pan, Y.-C.; Hu, X.-Y.; Guo, D.-S. Biomedical Applications of Calixarenes: State of the Art and Perspectives. Angewandte Chemie (International ed. in English) 2020, 60, 2768–2794. doi:10.1002/anie.201916380
- Gao, J.; Guo, D.-S. Supramolecular Medicine of Diverse Calixarene Derivatives. Handbook of Macrocyclic Supramolecular Assembly; Springer Singapore, 2020; pp 201–229. doi:10.1007/978-981-15-2686-2_9
- Hu, X.-Y.; Gao, J.; Chen, F.-Y.; Guo, D.-S. A host-guest drug delivery nanosystem for supramolecular chemotherapy. Journal of controlled release : official journal of the Controlled Release Society 2020, 324, 124–133. doi:10.1016/j.jconrel.2020.05.008
- Tian, H.-W.; Liu, Y.-C.; Guo, D.-S. Assembling features of calixarene-based amphiphiles and supra-amphiphiles. Materials Chemistry Frontiers 2020, 4, 46–98. doi:10.1039/c9qm00489k
- Yue, Y.-X.; Kong, Y.; Yang, F.; Zheng, Z.; Hu, X.-Y.; Guo, D.-S. Supramolecular Tandem Assay for Pyridoxal‐5′‐phosphate by the Reporter Pair of Guanidinocalix[5]Arene and Fluorescein. ChemistryOpen 2019, 8, 1437–1440. doi:10.1002/open.201900316
- Wang, Y.-Y.; Kong, Y.; Zheng, Z.; Geng, W.-C.; Zhao, Z.-Y.; Sun, H.; Guo, D.-S. Complexation of a guanidinium-modified calixarene with diverse dyes and investigation of the corresponding photophysical response. Beilstein journal of organic chemistry 2019, 15, 1394–1406. doi:10.3762/bjoc.15.139
- Yu, H.; Geng, W.-C.; Zheng, Z.; Gao, J.; Guo, D.-S.; Wang, Y. Facile Fluorescence Monitoring of Gut Microbial Metabolite Trimethylamine N-oxide via Molecular Recognition of Guanidinium-Modified Calixarene. Theranostics 2019, 9, 4624–4632. doi:10.7150/thno.33459
- Gao, J.; Guo, D.-S. Supramolecular Medicine of Diverse Calixarene Derivatives. Handbook of Macrocyclic Supramolecular Assembly; Springer Singapore, 2019; pp 1–30. doi:10.1007/978-981-13-1744-6_9-1
- Zhang, S.; Assaf, K. I.; Huang, C.; Hennig, A.; Nau, W. M. Ratiometric DNA sensing with a host–guest FRET pair. Chemical communications (Cambridge, England) 2019, 55, 671–674. doi:10.1039/c8cc09126a