Evaluation of dispersion type metal···π arene interaction in arylbismuth compounds – an experimental and theoretical study

Ana-Maria Preda, Małgorzata Krasowska, Lydia Wrobel, Philipp Kitschke, Phil C. Andrews, Jonathan G. MacLellan, Lutz Mertens, Marcus Korb, Tobias Rüffer, Heinrich Lang, Alexander A. Auer and Michael Mehring
Beilstein J. Org. Chem. 2018, 14, 2125–2145. https://doi.org/10.3762/bjoc.14.187

Supporting Information

Synthesis of compounds 15. Molecular structures of 2a, 2b, 4, and 5 (Figures S1–S4). Temperature dependent PXRD of Ph3Bi (1a, Figure S5), PXRD pattern of the three Ph3Bi polymorphs (Figure S6), PXRD pattern of 1a, 1b, 2a, 2b, and 3 (Figures S7–S11). Crystallographic data and structure refinement details for (1a), [42] (1b), [45] (1c) [44] and (1d) [39], 1b, 2a, 2b and 35, respectively (Tables S1, S2, and S3). Computational details. Structures of π-stacking dimers found for polymorph 1a, 1b and 1c of Ph3Bi (Figures S12–S14). Interaction energies (with respect to BiPh3 in crystal geometry) and total energies (with respect to fully relaxed BiPh3) in kJ mol−1 of π-stacking dimers (Table S4). Cartesian coordinates.

Supporting Information File 1: Additional material.
Format: PDF Size: 2.5 MB Download

Cite the Following Article

Evaluation of dispersion type metal···π arene interaction in arylbismuth compounds – an experimental and theoretical study
Ana-Maria Preda, Małgorzata Krasowska, Lydia Wrobel, Philipp Kitschke, Phil C. Andrews, Jonathan G. MacLellan, Lutz Mertens, Marcus Korb, Tobias Rüffer, Heinrich Lang, Alexander A. Auer and Michael Mehring
Beilstein J. Org. Chem. 2018, 14, 2125–2145. https://doi.org/10.3762/bjoc.14.187

How to Cite

Preda, A.-M.; Krasowska, M.; Wrobel, L.; Kitschke, P.; Andrews, P. C.; MacLellan, J. G.; Mertens, L.; Korb, M.; Rüffer, T.; Lang, H.; Auer, A. A.; Mehring, M. Beilstein J. Org. Chem. 2018, 14, 2125–2145. doi:10.3762/bjoc.14.187

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 697.8 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Nguyen, A. T.; Louis-Goff, T.; Ortiz-Garcia, J. J.; Pham, T. K. N.; Quardokus, R. C.; Lee, E.-C.; Brown, J. J.; Hyvl, J.; Lee, W. Cluster Formation of Self-Assembled Triarylbismuthanes and Charge Transport Characterizations of Gold-Triarylbismuthane-Gold Junctions. ACS applied materials & interfaces 2024, 16, 38669–38678. doi:10.1021/acsami.4c04294
  • Meelua, W.; Wanjai, T.; Chokbunpiam, T.; Jitonnom, J. Mechanism of ring‐opening polymerization of l‐lactide by lanthanide aryloxide: A theoretical study on the effect of the aryloxide ligands on the process. International Journal of Quantum Chemistry 2023, 123. doi:10.1002/qua.27134
  • Dunaj, T.; Schwarzmann, J.; Ramler, J.; Stoy, A.; Reith, S.; Nitzsche, J.; Völlinger, L.; von Hänisch, C.; Lichtenberg, C. Bismuth Cations: Fluoride Ion Abstraction, Isocyanide Coordination, and Impact of Steric Bulk on Lewis Acidity. Chemistry (Weinheim an der Bergstrasse, Germany) 2023, 29, e202204012. doi:10.1002/chem.202204012
  • Yuan, B.; Oliveira, J. C. A.; Ackermann, L. Understanding and Describing London Dispersion Effects in ­Transition-Metal-Catalyzed C–H Activations. Synlett 2023, 34, 1098–1112. doi:10.1055/a-2060-3288
  • Varadwaj, P. R.; Varadwaj, A.; Marques, H. M.; Yamashita, K. The pnictogen bond forming ability of bonded bismuth atoms in molecular entities in the crystalline phase: a perspective. CrystEngComm 2023, 25, 1038–1052. doi:10.1039/d2ce01620f
  • Dunaj, T.; Egorycheva, M.; Arebi, A.; Dollberg, K.; von Hänisch, C. 2,6‐Diisopropylphenyl substituted Bismuth Halide and Interpnictogen Compounds. Zeitschrift für anorganische und allgemeine Chemie 2023, 649. doi:10.1002/zaac.202300004
  • Doerrer, L. H.; Del Rosario, C.; Fan, A. Metallophilic interactions. Comprehensive Inorganic Chemistry III; Elsevier, 2023; pp 665–739. doi:10.1016/b978-0-12-823144-9.00171-0
  • Dunaj, T.; von Hänisch, C. Heavy Chains: Synthesis, Reactivity and Decomposition of Interpnictogen Chains with Terminal Diaryl Bismuth Fragments. Chemistry (Weinheim an der Bergstrasse, Germany) 2022, 28, e202202932. doi:10.1002/chem.202202932
  • Dunaj, T.; Dollberg, K.; von Hänisch, C. Binary interpnictogen compounds bearing diaryl bismuth fragments bound to all lighter pnictogens. Dalton transactions (Cambridge, England : 2003) 2022, 51, 7551–7560. doi:10.1039/d2dt00472k
  • Matsumura, Y.; Horikoshi, H.; Furukawa, K.; Miyamoto, M.; Nishimura, Y.; Ochiai, B. Synthesis of Bismuth-Containing Polymer Films with High Refractive Index and X-ray Shielding Property by Radical Polymerization of Styrylbismuthine Derivatives. ACS macro letters 2022, 11, 723–726. doi:10.1021/acsmacrolett.2c00149
  • Kuziola, J.; Magre, M.; Nöthling, N.; Cornella, J. Synthesis and Structure of Mono-, Di-, and Trinuclear Fluorotriarylbismuthonium Cations. Organometallics 2022, 41, 1754–1762. doi:10.1021/acs.organomet.2c00135
  • Gehlhaar, A.; Schiavo, E.; Wölper, C.; Schulte, Y.; Auer, A. A.; Schulz, S. Comparing London dispersion pnictogen-π interactions in naphthyl-substituted dipnictanes. Dalton transactions (Cambridge, England : 2003) 2022, 51, 5016–5023. doi:10.1039/d2dt00477a
  • Ho, L. P.; Tamm, M. Chalcogen‐Pnictogen Complexes of Anionic N‐Heterocyclic Carbenes with a Weakly Coordinating Borate Moiety. European Journal of Inorganic Chemistry 2022, 2022. doi:10.1002/ejic.202200090
  • Gehlhaar, A.; Wölper, C.; van der Vight, F.; Jansen, G.; Schulz, S. Noncovalent intra- and intermolecular interactions in peri-substituted pnicta naphthalene and acenaphthalene complexes. European Journal of Inorganic Chemistry 2021, 2022. doi:10.1002/ejic.202100883
  • Schiavo, E.; Bhattacharyya, K.; Mehring, M.; Auer, A. A. Are Heavy Pnictogen-π Interactions Really "π Interactions"?. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 14520–14526. doi:10.1002/chem.202102418
  • Messelberger, J.; Pinter, P.; Heinemann, F. W.; Munz, D. A lead(II) toluene complex. Mendeleev Communications 2021, 31, 471–474. doi:10.1016/j.mencom.2021.07.011
  • Shimada, S.; Yin, S.-F.; Bao, M. A new C-anionic tripodal ligand 2-{bis(benzothiazolyl)(methoxy)methyl}phenyl and its bismuth complexes. Dalton transactions (Cambridge, England : 2003) 2021, 50, 7949–7954. doi:10.1039/d1dt01071a
  • Şuteu, R.; Toma, A. M.; Mehring, M.; Silvestru, A. Hypercoordinated diorganopnicogen(III) compounds based on a butterfly-like skeleton of type [CH3OCH2CH2N(CH2C6H4)2]M (M = Sb, Bi). Journal of Organometallic Chemistry 2020, 920, 121343. doi:10.1016/j.jorganchem.2020.121343
  • Ramler, J.; Lichtenberg, C. Molecular Bismuth Cations: Assessment of Soft Lewis Acidity. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 10250–10258. doi:10.1002/chem.202001674
  • Fritzsche, A. M.; Scholz, S.; Krasowska, M.; Bhattacharyya, K.; Toma, A. M.; Silvestru, C.; Korb, M.; Rüffer, T.; Lang, H.; Auer, A. A.; Mehring, M. Evaluation of bismuth-based dispersion energy donors - synthesis, structure and theoretical study of 2-biphenylbismuth(iii) derivatives. Physical chemistry chemical physics : PCCP 2020, 22, 10189–10211. doi:10.1039/c9cp06924k
Other Beilstein-Institut Open Science Activities