Supporting Information
Supporting Information File 1: Detailed experimental procedures and characterization data for all new compounds. | ||
Format: PDF | Size: 4.1 MB | Download |
Cite the Following Article
Cobalt bis(acetylacetonate)–tert-butyl hydroperoxide–triethylsilane: a general reagent combination for the Markovnikov-selective hydrofunctionalization of alkenes by hydrogen atom transfer
Xiaoshen Ma and Seth B. Herzon
Beilstein J. Org. Chem. 2018, 14, 2259–2265.
https://doi.org/10.3762/bjoc.14.201
How to Cite
Ma, X.; Herzon, S. B. Beilstein J. Org. Chem. 2018, 14, 2259–2265. doi:10.3762/bjoc.14.201
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 124.3 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Jankins, T. C.; Blank, P. M.; Brugnetti, A.; Boehm, P.; Aouane, F. A.; Morandi, B. Shuttle HAT for mild alkene transfer hydrofunctionalization. Nature communications 2024, 15, 9397. doi:10.1038/s41467-024-53281-7
- Zhang, Y.; Zhang, Y.; Xue, X.; Qing, F. Reversal of the Regioselectivity of Iron‐Promoted Hydrogenation and Hydrohalogenation of gem‐Difluoroalkenes. Angewandte Chemie 2024, 136. doi:10.1002/ange.202406324
- Zhang, Y.-Y.; Zhang, Y.; Xue, X.-S.; Qing, F.-L. Reversal of the Regioselectivity of Iron-Promoted Hydrogenation and Hydrohalogenation of gem-Difluoroalkenes. Angewandte Chemie (International ed. in English) 2024, 63, e202406324. doi:10.1002/anie.202406324
- Müller, D. S. Advancements in hydrochlorination of alkenes. Beilstein journal of organic chemistry 2024, 20, 787–814. doi:10.3762/bjoc.20.72
- Li, X.-R.; Zhang, R.-J.; Xiao, Y.; Tong, Q.-X.; Zhong, J.-J. N-Sulfenyl phthalimide enabled Markovnikov hydrothiolation of unactivated alkenes via ligand promoted cobalt catalysis. Organic Chemistry Frontiers 2024, 11, 646–653. doi:10.1039/d3qo01632c
- Zhang, R.-J.; Li, X.-R.; Liang, R.-B.; Xiao, Y.; Tong, Q.-X.; Zhong, J.-J.; Wu, L.-Z. Thiyl Radical Trapped by Cobalt Catalysis: An Approach to Markovnikov Thiol-Ene Reaction. Organic letters 2024, 26, 591–596. doi:10.1021/acs.orglett.3c03740
- Kourgiantaki, M.; Demertzidou, V. P.; Zografos, A. L. Short Scalable Route to Apiaceae Sesquiterpene Scaffolds: Total Synthesis of 4-epi-Epiguaidiol A. Organic letters 2022, 24, 8476–8480. doi:10.1021/acs.orglett.2c03215
- Ram Bajya, K.; Selvakumar, S. Dual Photoredox and Cobalt Catalysis Enabled Transformations. European Journal of Organic Chemistry 2022, 2022. doi:10.1002/ejoc.202200229
- Price, J. S.; Emslie, D. J. Cyclic and Non-Cyclic Pi Complexes of Manganese. Comprehensive Organometallic Chemistry IV; Elsevier, 2022; pp 378–546. doi:10.1016/b978-0-12-820206-7.00077-9
- Sun, F.; Suttapitugsakul, S.; Wu, R. An Azo Coupling-Based Chemoproteomic Approach to Systematically Profile the Tyrosine Reactivity in the Human Proteome. Analytical chemistry 2021, 93, 10334–10342. doi:10.1021/acs.analchem.1c01935
- Kattamuri, P. V.; West, J. G. Cooperative Hydrogen Atom Transfer: From Theory to Applications. Synlett 2021, 32, 1179–1186. doi:10.1055/a-1463-9527
- Kamei, Y.; Seino, Y.; Yamaguchi, Y.; Yoshino, T.; Maeda, S.; Kojima, M.; Matsunaga, S. Silane- and peroxide-free hydrogen atom transfer hydrogenation using ascorbic acid and cobalt-photoredox dual catalysis. Nature communications 2021, 12, 966. doi:10.1038/s41467-020-20872-z
- Yuki, Y.; Shin-ichi, K.; Shintaro, K.; Akihiro, N.; Akiya, O. Highly Selective Hydroiodination of Carbon-Carbon Double or Triple Bonds. Current Organic Chemistry 2020, 24, 2153–2168. doi:10.2174/1385272824666191227111257
- Kattamuri, P. V.; West, J. G. Hydrogenation of Alkenes via Cooperative Hydrogen Atom Transfer. Journal of the American Chemical Society 2020, 142, 19316–19326. doi:10.1021/jacs.0c09544
- Sun, H.-L.; Yang, F.; Ye, W.-T.; Wang, J.-J.; Zhu, R. Dual Cobalt and Photoredox Catalysis Enabled Intermolecular Oxidative Hydrofunctionalization. ACS Catalysis 2020, 10, 4983–4989. doi:10.1021/acscatal.0c01209
- Date, S.; Hamasaki, K.; Sunagawa, K.; Koyama, H.; Sebe, C.; Hiroya, K.; Shigehisa, H. Catalytic Direct Cyclization of Alkenyl Thioester. ACS Catalysis 2020, 10, 2039–2045. doi:10.1021/acscatal.9b05045
- Yasukawa, T.; Kobayashi, S. Oxygenation of Styrenes Catalyzed by N-Doped Carbon Incarcerated Cobalt Nanoparticles. Bulletin of the Chemical Society of Japan 2019, 92, 1980–1985. doi:10.1246/bcsj.20190251
- Krajewski, S. M.; Crossman, A. S.; Akturk, E. S.; Suhrbier, T.; Scappaticci, S. J.; Staab, M. W.; Marshak, M. P. Sterically encumbered β-diketonates and base metal catalysis. Dalton transactions (Cambridge, England : 2003) 2019, 48, 10714–10722. doi:10.1039/c9dt02293g
- Hori, H.; Arai, S.; Nishida, A. Cobalt-catalyzed cyclization with the introduction of cyano, acyl and aminoalkyl groups. Organic & biomolecular chemistry 2019, 17, 4783–4788. doi:10.1039/c9ob00637k
- Zhou, X.-L.; Yang, F.; Sun, H.-L.; Yin, Y.-N.; Ye, W.-T.; Zhu, R. Cobalt-Catalyzed Intermolecular Hydrofunctionalization of Alkenes: Evidence for a Bimetallic Pathway. Journal of the American Chemical Society 2019, 141, 7250–7255. doi:10.1021/jacs.9b01857