The enzymes of microbial nicotine metabolism

Paul F. Fitzpatrick
Beilstein J. Org. Chem. 2018, 14, 2295–2307. https://doi.org/10.3762/bjoc.14.204

Cite the Following Article

The enzymes of microbial nicotine metabolism
Paul F. Fitzpatrick
Beilstein J. Org. Chem. 2018, 14, 2295–2307. https://doi.org/10.3762/bjoc.14.204

How to Cite

Fitzpatrick, P. F. Beilstein J. Org. Chem. 2018, 14, 2295–2307. doi:10.3762/bjoc.14.204

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 84.6 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Yang, X.; Zhangyi, Z.; Yu, A.; Zhou, Q.; Xia, A.; Qiu, J.; Cai, M.; Chu, X.; Li, L.; Feng, Z.; Luo, Z.; Sun, G.; Zhang, J.; Geng, M.; Chen, S.; Xie, Z. GV-971 attenuates the progression of neuromyelitis optica in murine models and reverses alterations in gut microbiota and associated peripheral abnormalities. CNS neuroscience & therapeutics 2024, 30, e14847. doi:10.1111/cns.14847
  • Chu, L. L.; My, L. Q.; Quang, H. N. Microbial alkaloids and their pharmaceutical and agricultural application. Fungal Secondary Metabolites; Elsevier, 2024; pp 73–90. doi:10.1016/b978-0-323-95241-5.00018-6
  • Ye, C.; Liu, D.; Huang, K.; Li, D.; Ma, X.; Jin, Y.; Xiong, H. Isolation of starch and protein degrading strain Bacillus subtilis FYZ1-3 from tobacco waste and genomic analysis of its tolerance to nicotine and inhibition of fungal growth. Frontiers in microbiology 2023, 14, 1260149. doi:10.3389/fmicb.2023.1260149
  • Ruzicka, J.; Julinova, M.; Rouchal, M.; Salac, J.; Vanharova, L.; Urban, J.; Pancochova, K. Degradation of antibacterial 1-octylpyrrolidin-2-one by bacterial pairs isolated from river water and soil. Environmental science and pollution research international 2022, 29, 45292–45302. doi:10.1007/s11356-022-19121-1
  • Zhang, Z.; Mei, X.; He, Z.; Xie, X.; Yang, Y.; Mei, C.; Xue, D.; Hu, T.; Shu, M.; Zhong, W. Nicotine metabolism pathway in bacteria: mechanism, modification, and application. Applied microbiology and biotechnology 2022, 106, 889–904. doi:10.1007/s00253-022-11763-y
  • Mihasan, M.; Boiangiu, R. S.; Guzun, D.; Babii, C.; Aslebagh, R.; Channaveerappa, D.; Dupree, E. J.; Darie, C. C. Time-Dependent Analysis of Paenarthrobacter nicotinovorans pAO1 Nicotine-Related Proteome. ACS omega 2021, 6, 14242–14251. doi:10.1021/acsomega.1c01020
  • Tararina, M. A.; Dam, K. K.; Dhingra, M.; Janda, K. D.; Palfey, B. A.; Allen, K. N. Fast Kinetics Reveals Rate-Limiting Oxidation and the Role of the Aromatic Cage in the Mechanism of the Nicotine-Degrading Enzyme NicA2. Biochemistry 2021, 60, 259–273. doi:10.1021/acs.biochem.0c00855
  • Dulchavsky, M.; Clark, C. T.; Bardwell, J. C.; Stull, F. A cytochrome c is the natural electron acceptor for nicotine oxidoreductase. Nature chemical biology 2021, 17, 344–350. doi:10.1038/s41589-020-00712-3
  • Li, J.; Shen, M.; Chen, Z.; Pan, F.; Yang, Y.; Shu, M.; Chen, G.; Yang, J.; Zhang, F.; Linhardt, R. J.; Zhong, W. Expression and functional identification of two homologous nicotine dehydrogenases, NicA2 and Nox, from Pseudomonas sp. JY-Q. Protein expression and purification 2020, 178, 105767. doi:10.1016/j.pep.2020.105767
  • Deay, D. O.; Colvert, K. K.; Gao, F.; Seibold, S.; Goyal, P.; Aillon, D. V.; Petillo, P. A.; Richter, M. L. An active site mutation in 6-hydroxy-l-Nicotine oxidase from Arthrobacter nicotinovorans changes the substrate specificity in favor of (S)-nicotine. Archives of biochemistry and biophysics 2020, 692, 108520. doi:10.1016/j.abb.2020.108520
  • Brandsch, R.; Mihasan, M. A Soil Bacterial Catabolic Pathway on the Move: Transfer of Nicotine Catabolic Genes Between Arthrobacter Genus Megaplasmids and Invasion by Mobile Elements. Journal of biosciences 2020, 45, 1–12. doi:10.1007/s12038-020-00030-9
  • Tararina, M. A.; Allen, K. N. Bioinformatic Analysis of the Flavin-Dependent Amine Oxidase Superfamily: Adaptations for Substrate Specificity and Catalytic Diversity. Journal of molecular biology 2020, 432, 3269–3288. doi:10.1016/j.jmb.2020.03.007
  • Mu, Y.; Chen, Q.; Parales, R. E.; Lu, Z.; Hong, Q.; He, J.; Qiu, J.; Jiang, J. Bacterial catabolism of nicotine: Catabolic strains, pathways and modules. Environmental research 2020, 183, 109258. doi:10.1016/j.envres.2020.109258
  • Xia, Z.-z.; Yu, M.-f.; Yao, J.-c.; Feng, Z.; Li, D.-h.; Tao, L.; Guojun, C.; He, D.; Li, X. Functional analysis of the agnH gene involved in nicotine-degradation pathways in Agrobacterium tumefaciens strain SCUEC1. FEMS microbiology letters 2020, 367. doi:10.1093/femsle/fnaa040
  • Fitzpatrick, P. F.; Dougherty, V.; Subedi, B. P.; Quilantan, J.; Hinck, C. S.; Lujan, A. I.; Tormos, J. R. Mechanism of the Flavoprotein d-6-Hydroxynicotine Oxidase: Substrate Specificity, pH and Solvent Isotope Effects, and Roles of Key Active-Site Residues. Biochemistry 2019, 58, 2534–2541. doi:10.1021/acs.biochem.9b00297
  • Xia, Z.; Lei, L.; Zhang, H.-Y.; Wei, H.-L. Characterization of the ModABC Molybdate Transport System of Pseudomonas putida in Nicotine Degradation. Frontiers in microbiology 2018, 9, 3030. doi:10.3389/fmicb.2018.03030
Other Beilstein-Institut Open Science Activities