Cite the Following Article
Protein–protein interactions in bacteria: a promising and challenging avenue towards the discovery of new antibiotics
Laura Carro
Beilstein J. Org. Chem. 2018, 14, 2881–2896.
https://doi.org/10.3762/bjoc.14.267
How to Cite
Carro, L. Beilstein J. Org. Chem. 2018, 14, 2881–2896. doi:10.3762/bjoc.14.267
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 1.3 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Bollati, M.; Fasola, E.; Pieraccini, S.; Freddi, F.; Cocomazzi, P.; Oliva, F.; Klußmann, M.; Maspero, A.; Piarulli, U.; Ferrara, S.; Pellegrino, S.; Bertoni, G.; Gazzola, S. Impairing protein–protein interactions in an essential tRNA modification complex: An innovative antimicrobial strategy against Pseudomonas aeruginosa. Journal of Peptide Science 2024. doi:10.1002/psc.3658
- Cruz-Bautista, R.; Zelarayan-Agüero, A.; Ruiz-Villafán, B.; Escalante-Lozada, A.; Rodríguez-Sanoja, R.; Sánchez, S. An overview of the two-component system GarR/GarS role on antibiotic production in Streptomyces coelicolor. Applied microbiology and biotechnology 2024, 108, 306. doi:10.1007/s00253-024-13136-z
- Gómez Borrego, J.; Torrent Burgas, M. Structural assembly of the bacterial essential interactome. eLife 2024, 13. doi:10.7554/elife.94919
- Chengan, K.; Hind, C.; Stanley, M.; Wand, M. E.; Nagappa, L. K.; Howland, K.; Hanson, T.; Martín-Escolano, R.; Tsaousis, A. D.; Bengoechea, J. A.; Mark Sutton, J.; Smales, C. M.; Moore, S. J. A cell-free strategy for host-specific profiling of intracellular antibiotic sensitivity and resistance. npj Antimicrobials and Resistance 2023, 1. doi:10.1038/s44259-023-00018-z
- Halawa, M.; Akantibila, M.; Reid, B. E.; Carabetta, V. J. Therapeutic proteins have the potential to become new weapons in the fight against antibiotic resistance. Frontiers in Bacteriology 2023, 2. doi:10.3389/fbrio.2023.1304444
- Murugesan, J.; Mubarak, S. J.; Vedagiri, H. Design of novel anti-quorum sensing peptides targeting LuxO to combat Vibrio cholerae pathogenesis. In silico pharmacology 2023, 11, 30. doi:10.1007/s40203-023-00172-2
- Chen, J.; Kuhn, L. A.; Raschka, S. Techniques for Developing Reliable Machine Learning Classifiers Applied to Understanding and Predicting Protein:Protein Interaction Hot Spots. Methods in molecular biology (Clifton, N.J.) 2023, 2714, 235–268. doi:10.1007/978-1-0716-3441-7_14
- Gómez Borrego, J.; Torrent, M. B. Structural assembly of the bacterial essential interactome. Cold Spring Harbor Laboratory 2023. doi:10.1101/2023.06.14.544900
- Chengan, K.; Hind, C.; Nagappa, L.; Wand, M. E.; Hanson, T.; Escolano, R. M.; Tsaousis, A.; Bengoechea, J. A.; Mark Sutton, J.; Smales, C. M.; Moore, S. J. A cell-free strategy for profiling intracellular antibiotic sensitivity and resistance. Cold Spring Harbor Laboratory 2023. doi:10.1101/2023.04.13.536698
- Catara, G.; Caggiano, R.; Palazzo, L. The DarT/DarG Toxin-Antitoxin ADP-Ribosylation System as a Novel Target for a Rational Design of Innovative Antimicrobial Strategies. Pathogens (Basel, Switzerland) 2023, 12, 240. doi:10.3390/pathogens12020240
- Chen, J.; Kuhn, L. A.; Raschka, S. Techniques for Developing Reliable Machine Learning Classifiers Applied to Understanding and Predicting Protein:Protein Interaction Hot Spots. Cold Spring Harbor Laboratory 2022. doi:10.1101/2022.12.26.521948
- Yu, W.; Weber, D. J.; MacKerell, A. D. Computer-Aided Drug Design: An Update. Methods in molecular biology (Clifton, N.J.) 2022, 2601, 123–152. doi:10.1007/978-1-0716-2855-3_7
- Gómez Borrego, J.; Torrent Burgas, M. Analysis of Host-Bacteria Protein Interactions Reveals Conserved Domains and Motifs That Mediate Fundamental Infection Pathways. International journal of molecular sciences 2022, 23, 11489. doi:10.3390/ijms231911489
- Champney, S. Macromolecular Structure Assembly as a Novel Antibiotic Target. Antibiotics (Basel, Switzerland) 2022, 11, 937. doi:10.3390/antibiotics11070937
- James, K.; Muñoz-Muñoz, J. Computational Network Inference for Bacterial Interactomics. mSystems 2022, 7, e0145621. doi:10.1128/msystems.01456-21
- Zhu, F.; Li, F.; Deng, L.; Meng, F.; Liang, Z. Protein Interaction Network Reconstruction with a Structural Gated Attention Deep Model by Incorporating Network Structure Information. Journal of chemical information and modeling 2022, 62, 258–273. doi:10.1021/acs.jcim.1c00982
- Bouvier, B. Protein-Protein Interface Topology as a Predictor of Secondary Structure and Molecular Function Using Convolutional Deep Learning. Journal of chemical information and modeling 2021, 61, 3292–3303. doi:10.1021/acs.jcim.1c00644
- Yaacob, M. F.; Abdullah, F. F. J.; Jamil, N. M.; Yunus, N. M.; Aazmi, S.; Yahya, M. F. Z. R. The effect of dimethyl sulfoxide on Corynebacterium pseudotuberculosis biofilm: An in silico prediction and experimental validation. Journal of Physics: Conference Series 2021, 1874, 012055. doi:10.1088/1742-6596/1874/1/012055
- Kahan, R.; Worm, D. J.; de Castro, G. V.; Ng, S.; Barnard, A. Modulators of protein–protein interactions as antimicrobial agents. RSC chemical biology 2021, 2, 387–409. doi:10.1039/d0cb00205d
- Algar, S.; Martín-Martínez, M.; González-Muñiz, R. Evolution in non-peptide α-helix mimetics on the road to effective protein-protein interaction modulators. European journal of medicinal chemistry 2020, 211, 113015. doi:10.1016/j.ejmech.2020.113015
Patents
- QUEMARD ANNAÏK; BARDOU FABIENNE; BORIES PASCALINE; DUCOUX-PETIT MANUELLE; ROCHE PHILIPPE; CONSTANT PATRICIA; TRANIER SAMUEL; BON CÉCILE; MOUREY LIONEL; MARCOUX JULIEN. INNOVATIVE MOLECULES DECREASING VIRULENCE OF MYCOBACTERIUM FOR THE TREATMENT OF TUBERCULOSIS. EP 4296674 A1, Dec 27, 2023.