An air-stable bisboron complex: a practical bidentate Lewis acid catalyst

Longcheng Hong, Sebastian Ahles, Andreas H. Heindl, Gastelle Tiétcha, Andrey Petrov, Zhenpin Lu, Christian Logemann and Hermann A. Wegner
Beilstein J. Org. Chem. 2018, 14, 618–625. https://doi.org/10.3762/bjoc.14.48

Supporting Information

Supporting Information File 1: Detailed experimental procedures, copies of 1H and 13C NMR spectra, UV–vis spectra as well as the X-ray crystallography.
Format: PDF Size: 1.9 MB Download
Supporting Information File 2: CIF of bisborane complex B.
Format: CIF Size: 12.6 MB Download

Cite the Following Article

An air-stable bisboron complex: a practical bidentate Lewis acid catalyst
Longcheng Hong, Sebastian Ahles, Andreas H. Heindl, Gastelle Tiétcha, Andrey Petrov, Zhenpin Lu, Christian Logemann and Hermann A. Wegner
Beilstein J. Org. Chem. 2018, 14, 618–625. https://doi.org/10.3762/bjoc.14.48

How to Cite

Hong, L.; Ahles, S.; Heindl, A. H.; Tiétcha, G.; Petrov, A.; Lu, Z.; Logemann, C.; Wegner, H. A. Beilstein J. Org. Chem. 2018, 14, 618–625. doi:10.3762/bjoc.14.48

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 267.1 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Schäfer, F.; Mix, A.; Cati, N.; Lamm, J.-H.; Neumann, B.; Stammler, H.-G.; Mitzel, N. W. Host-guest chemistry of a bidentate silyl-triflate bis-Lewis acid - complex complexation behaviour unravelled by diffusion NMR spectroscopy. Dalton transactions (Cambridge, England : 2003) 2022, 51, 7164–7173. doi:10.1039/d2dt00583b
  • He, H.-Y.; Niikura, H.; Du, Y.-L.; Ryan, K. S. Synthetic and biosynthetic routes to nitrogen-nitrogen bonds. Chemical Society reviews 2022, 51, 2991–3046. doi:10.1039/c7cs00458c
  • Chaitanya, M.; Anbarasan, P. Comprehensive Heterocyclic Chemistry IV - 1,2,4,5-Tetrazines. Comprehensive Heterocyclic Chemistry IV; Elsevier, 2022; pp 586–639. doi:10.1016/b978-0-12-818655-8.00096-2
  • Rudlof, J.; Neumann, B.; Stammler, H.-G.; Mitzel, N. W. Synthesis of a bifunctional boron-Lewis acid and studies on host-guest chemistry using pyridine and TMPD. Zeitschrift für Naturforschung B 2021, 77, 141–148. doi:10.1515/znb-2021-0175
  • Rudlof, J.; Aders, N.; Lamm, J.-H.; Neumann, B.; Stammler, H.-G.; Mitzel, N. W. Bidentate Lewis Acids Derived from o-Diethynylbenzene with Group 13 and 14 Functions. ChemistryOpen 2021, 10, 1020–1027. doi:10.1002/open.202100198
  • Rudlof, J.; Neumann, B.; Stammler, G.; Mitzel, N. W. Synthesis of Directed, Tridentate Lewis Acids Based on a Trsilacyclohexane-Backbone via Hydrosilylation. Zeitschrift für anorganische und allgemeine Chemie 2021, 647, 1967–1972. doi:10.1002/zaac.202100268
  • Schäfer, F.; Neumann, B.; Stammler, H.-G.; Mitzel, N. W. Hexadentate Poly-Lewis Acids Based on 1,3,5-Trisilacyclohexane. European Journal of Inorganic Chemistry 2021, 2021, 3083–3090. doi:10.1002/ejic.202100437
  • Schnell, S. D.; González, J. A.; Sklyaruk, J.; Linden, A.; Gademann, K. Boron Trifluoride-Mediated Cycloaddition of 3-Bromotetrazine and Silyl Enol Ethers: Synthesis of 3-Bromo-pyridazines. The Journal of organic chemistry 2021, 86, 12008–12023. doi:10.1021/acs.joc.1c01384
  • Strauss, M. A.; Kohrs, D.; Ruhl, J.; Wegner, H. A. Mechanistic Study of Domino Processes Involving the Bidentate Lewis Acid Catalyzed Inverse Electron-Demand Diels−Alder Reaction. European Journal of Organic Chemistry 2021, 2021, 3866–3873. doi:10.1002/ejoc.202100486
  • Ruhl, J.; Ahles, S.; Strauss, M. A.; Leonhardt, C. M.; Wegner, H. A. Synthesis of Medium-Sized Carbocycles via a Bidentate Lewis Acid-Catalyzed Inverse Electron-Demand Diels-Alder Reaction Followed by Photoinduced Ring-Opening. Organic letters 2021, 23, 2089–2093. doi:10.1021/acs.orglett.1c00249
  • Chen, Q.; Luo, M.; Guo, F.; Liang, K.; Zhou, F.; Gao, G. An Addition of Terminal Alkynes to Phthalazin‐2‐Ium Bromide Catalyzed by Copper. Advanced Synthesis & Catalysis 2020, 362, 2332–2336. doi:10.1002/adsc.202000053
  • Sergeev, P. G.; Nenajdenko, V. G. Recent advances in the chemistry of pyridazine — an important representative of six-membered nitrogen heterocycles. Russian Chemical Reviews 2020, 89, 393–429. doi:10.1070/rcr4922
  • Hofmann, J. D.; Schmalisch, S.; Schwan, S.; Hong, L.; Wegner, H. A.; Mollenhauer, D.; Janek, J.; Schröder, D. Tailoring Dihydroxyphthalazines to Enable Their Stable and Efficient Use in the Catholyte of Aqueous Redox Flow Batteries. Chemistry of Materials 2020, 32, 3427–3438. doi:10.1021/acs.chemmater.9b05077
  • Widera, A.; Filbeck, E.; Wadepohl, H.; Kaifer, E.; Himmel, H.-J. Electron-Rich, Lewis Acidic Diborane Meets N-Heterocyclic Aromatics: Formation and Electron Transfer in Cyclophane Boranes. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 3435–3440. doi:10.1002/chem.202000189
  • Ahles, S.; Ruhl, J.; Strauss, M. A.; Wegner, H. A. Combining Bidentate Lewis Acid Catalysis and Photochemistry: Formal Insertion of o-Xylene into an Enamine Double Bond. Organic letters 2019, 21, 3927–3930. doi:10.1021/acs.orglett.9b01020
  • Landry, M. L.; McKenna, G. M.; Burns, N. Z. Enantioselective Synthesis of Azamerone. Journal of the American Chemical Society 2019, 141, 2867–2871. doi:10.1021/jacs.8b12566
  • Brend'amour, S.; Gilmer, J.; Bolte, M.; Lerner, H.-W.; Wagner, M. C-Halogenated 9,10-Diboraanthracenes: How the Halogen Load and Distribution Influences Key Optoelectronic Properties. Chemistry (Weinheim an der Bergstrasse, Germany) 2018, 24, 16910–16918. doi:10.1002/chem.201804288
  • Ahles, S.; Götz, S.; Schweighauser, L.; Brodsky, M.; Kessler, S. N.; Heindl, A. H.; Wegner, H. A. An Amine Group Transfer Reaction Driven by Aromaticity. Organic letters 2018, 20, 7034–7038. doi:10.1021/acs.orglett.8b02967
Other Beilstein-Institut Open Science Activities