Stereochemical outcomes of C–F activation reactions of benzyl fluoride

Neil S. Keddie, Pier Alexandre Champagne, Justine Desroches, Jean-François Paquin and David O'Hagan
Beilstein J. Org. Chem. 2018, 14, 106–113. https://doi.org/10.3762/bjoc.14.6

Supporting Information

The Supporting Information features experimental protocols and 1H, 19F (where appropriate) and 2H{1H} NMR spectra of benzyl fluoride 1 and adducts 5–10. The methods for measurement of the ee by 2H{1H} NMR are also described.

Supporting Information File 1: Experimental protocols.
Format: PDF Size: 1.5 MB Download
Supporting Information File 2: 2H NMR analysis of enantiopurity.
Format: PDF Size: 1.3 MB Download

Cite the Following Article

Stereochemical outcomes of C–F activation reactions of benzyl fluoride
Neil S. Keddie, Pier Alexandre Champagne, Justine Desroches, Jean-François Paquin and David O'Hagan
Beilstein J. Org. Chem. 2018, 14, 106–113. https://doi.org/10.3762/bjoc.14.6

How to Cite

Keddie, N. S.; Champagne, P. A.; Desroches, J.; Paquin, J.-F.; O'Hagan, D. Beilstein J. Org. Chem. 2018, 14, 106–113. doi:10.3762/bjoc.14.6

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 172.3 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Garg, A.; Haswell, A.; Hopkinson, M. N. C-F Bond Insertion: An Emerging Strategy for Constructing Fluorinated Molecules. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202304229. doi:10.1002/chem.202304229
  • Kitahara, T.; Tagami, Y.; Haga, Y.; Fustero, S.; Sugiishi, T.; Amii, H. Alkylation and silylation of α-fluorobenzyl anion intermediates. Organic & biomolecular chemistry 2023, 21, 9210–9215. doi:10.1039/d3ob01586f
  • Bertrand, X.; Pucheault, M.; Chabaud, L.; Paquin, J.-F. Synthesis of Tertiary Fluorides through an Acid-Mediated Deoxyfluorination of Tertiary Alcohols. The Journal of organic chemistry 2023, 88, 14527–14539. doi:10.1021/acs.joc.3c01558
  • Ishitani, H.; Kawase, T.; Das, A.; Kobayashi, S. Catalytic hydrogenative dechlorination reaction for efficient synthesis of a key intermediate of SDHI fungicides under continuous-flow conditions. Catalysis Science & Technology 2023, 13, 3282–3291. doi:10.1039/d3cy00182b
  • Garg, A.; Gerwien, N. J.; Fasting, C.; Charlton, A.; Hopkinson, M. N. Formal Insertion of Alkenes Into C(sp3 )-F Bonds Mediated by Fluorine-Hydrogen Bonding. Angewandte Chemie (International ed. in English) 2023, 62, e202302860. doi:10.1002/anie.202302860
  • Garg, A.; Gerwien, N. J.; Fasting, C.; Charlton, A.; Hopkinson, M. N. Formal Insertion of Alkenes Into C(sp3)−F Bonds Mediated by Fluorine‐Hydrogen Bonding. Angewandte Chemie 2023, 135. doi:10.1002/ange.202302860
  • Yeganeh-Salman, A.; Elser, I.; Bamford, K. L.; Ebanks, D.; Stephan, D. W. Probing B-X to B-H conversions and applications in C-F bond activation catalysis. Dalton transactions (Cambridge, England : 2003) 2022, 51, 17962–17966. doi:10.1039/d2dt03588j
  • Nielsen, M. M.; Pedersen, C. M. Vessel effects in organic chemical reactions; a century-old, overlooked phenomenon. Chemical science 2022, 13, 6181–6196. doi:10.1039/d2sc01125e
  • Ai, H.-J.; Ma, X.; Song, Q.; Wu, X.-F. C-F bond activation under transition-metal-free conditions. Science China Chemistry 2021, 64, 1630–1659. doi:10.1007/s11426-021-1040-2
  • Vulpetti, A.; Dalvit, C. Hydrogen Bond Acceptor Propensity of Different Fluorine Atom Types: An Analysis of Experimentally and Computationally Derived Parameters. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 8764–8773. doi:10.1002/chem.202100301
  • Houle, C.; Savoie, P. R.; Davies, C.; Jardel, D.; Champagne, P. A.; Bibal, B.; Paquin, J.-F. Thiourea-Catalyzed C-F Bond Activation: Amination of Benzylic Fluorides. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 10620–10625. doi:10.1002/chem.202001905
  • Nielsen, M. M.; Qiao, Y.; Wang, Y.; Pedersen, C. Vessel Effect in C–F Bond Activation Prompts Revised Mechanism and Reveals an Autocatalytic Glycosylation. European Journal of Organic Chemistry 2020, 2020, 140–144. doi:10.1002/ejoc.201901755
  • Pryyma, A.; Bu, Y. J.; Wai, Y.; Patrick, B. O.; Perrin, D. M. Synthesis and Activation of Bench-Stable 3a-Fluoropyrroloindolines as Latent Electrophiles for the Synthesis of C-2-Thiol-Substituted Tryptophans and C-3a-Substituted Pyrroloindolines. Organic letters 2019, 21, 8234–8238. doi:10.1021/acs.orglett.9b02972
  • Guo, J.; Bamford, K. L.; Stephan, D. W. 9-Borabicyclo[3.3.l]nonane-induced Friedel–Crafts benzylation of arenes with benzyl fluorides. Organic & biomolecular chemistry 2019, 17, 5258–5261. doi:10.1039/c9ob00912d
  • Hamel, J.-D.; Paquin, J.-F. Activation of C–F bonds α to C–C multiple bonds. Chemical communications (Cambridge, England) 2018, 54, 10224–10239. doi:10.1039/c8cc05108a
Other Beilstein-Institut Open Science Activities