Cite the Following Article
Phosphodiester models for cleavage of nucleic acids
Satu Mikkola, Tuomas Lönnberg and Harri Lönnberg
Beilstein J. Org. Chem. 2018, 14, 803–837.
https://doi.org/10.3762/bjoc.14.68
How to Cite
Mikkola, S.; Lönnberg, T.; Lönnberg, H. Beilstein J. Org. Chem. 2018, 14, 803–837. doi:10.3762/bjoc.14.68
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 137.0 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Koski, J.; Poijärvi, E.; Tulisalo, A.; Korhonen, H.; Mikkola, S. The Cleavage of RNA Model Compounds: The Interplay Between the Nucleophile and the Leaving Group. Journal of Physical Organic Chemistry 2024. doi:10.1002/poc.4664
- Zhong, W.; Wang, S.; Geng, C.; Zheng, Y.; Bai, S.; Cao, X.; Liu, K.; Yang, Y.; Lu, C.; Jiang, X. Multiplexed Random Access Approach to DNA Microspheres for High‐Capacity Data Storage. Advanced Functional Materials 2024. doi:10.1002/adfm.202408852
- Nardi, A. N.; Olivieri, A.; D'Abramo, M.; Salvio, R. Unveiling the Cleavage Mechanism of an RNA Model Compound on the whole pH Scale: Computations Meet Experiments in the Determination of Reaction Rates. Chemphyschem : a European journal of chemical physics and physical chemistry 2024, 25, e202300873. doi:10.1002/cphc.202300873
- Svenningsen, S. W.; Luige, O.; Abdulkarim, Z.; Strömberg, R.; Williams, N. H. Zinc N,N-bis(2-picolyl)amine Chelates Show Substitution-Dependent Cleavage of Phosphodiesters in Models as Well as of PNAzyme-RNA Bulges. Molecules (Basel, Switzerland) 2024, 29, 2123. doi:10.3390/molecules29092123
- Nardi, A. N.; Olivieri, A.; D'Abramo, M.; Amadei, A. A Theoretical-Computational Study of Phosphodiester Bond Cleavage Kinetics as a Function of the Temperature. Chemphyschem : a European journal of chemical physics and physical chemistry 2024, 25, e202300952. doi:10.1002/cphc.202300952
- Ryu, J.-H.; Zheng, W.; Yang, X.-H.; Elsaidi, H.; Diakur, J.; Wiebe, L. I. Synthesis and Preliminary Evaluation of an ASGPr-Targeted Polycationic β-Cyclodextrin Carrier for Nucleosides and Nucleotides. Pharmaceutics 2024, 16, 323. doi:10.3390/pharmaceutics16030323
- Vezzoni, C. A.; Casnati, A.; Orlanducci, S.; Sansone, F.; Salvio, R. Enzyme Mimics Based on Guanidinocalix[4]arene/ Nanodiamond Hybrid Systems with Phosphodiesterase Activity. ChemCatChem 2024, 16. doi:10.1002/cctc.202301477
- Gull, M.; Feng, T.; Smith, B.; Calcul, L.; Pasek, M. A. Prebiotic Syntheses of Organophosphorus Compounds from Reduced Source of Phosphorus in Non-Aqueous Solvents. Life (Basel, Switzerland) 2023, 13, 2134. doi:10.3390/life13112134
- Ding, M.; Ding, S.; Du, D.; Wang, X.; Hu, X.; Guan, P.; Lyu, Z.; Lin, Y. Recent advances in electrochemical biosensors for the detection of Aβ42, a biomarker for Alzheimer disease diagnosis. TrAC Trends in Analytical Chemistry 2023, 164, 117087. doi:10.1016/j.trac.2023.117087
- Yoon, S.; Ollie, E.; York, D. M.; Piccirilli, J. A.; Harris, M. E. Rapid Kinetics of Pistol Ribozyme: Insights into Limits to RNA Catalysis. Biochemistry 2023, 62, 2079–2092. doi:10.1021/acs.biochem.3c00160
- Yang, T.; Yu, J.; Ahmed, T.; Nguyen, K.; Nie, F.; Zan, R.; Li, Z.; Han, P.; Shen, H.; Zhang, X.; Takayama, S.; Song, Y. Synthetic neutrophil extracellular traps dissect bactericidal contribution of NETs under regulation of α-1-antitrypsin. Science advances 2023, 9, eadf2445. doi:10.1126/sciadv.adf2445
- Genna, V.; Iglesias-Fernández, J.; Reyes-Fraile, L.; Villegas, N.; Guckian, K.; Seth, P.; Wan, B.; Cabrero, C.; Terrazas, M.; Brun-Heath, I.; González, C.; Sciabola, S.; Villalobos, A.; Orozco, M. Controlled sulfur-based engineering confers mouldability to phosphorothioate antisense oligonucleotides. Nucleic acids research 2023, 51, 4713–4725. doi:10.1093/nar/gkad309
- Kundu, S.; Saha, S.; Panda, S. J.; Purohit, C. S.; Biswas, B. Tailor-made isostructural copper(ii) and nickel(ii) complexes with a newly designed (N,N)-donor scaffold as functional mimics of alkaline phosphatase. New Journal of Chemistry 2023, 47, 5894–5902. doi:10.1039/d2nj06127a
- Egli, M.; Manoharan, M. Chemistry, structure and function of approved oligonucleotide therapeutics. Nucleic acids research 2023, 51, 2529–2573. doi:10.1093/nar/gkad067
- El Orche, F.-E.; Hollenstein, M.; Houdaigoui, S.; Naccache, D.; Pchelina, D.; Rønne, P. B.; Ryan, P. Y. A.; Weibel, J.; Weil, R. Taphonomical Security: DNA Information with a Foreseeable Lifespan. Lecture Notes in Networks and Systems; Springer Nature Switzerland, 2023; pp 674–694. doi:10.1007/978-3-031-28073-3_46
- Nardi, A. N.; Olivieri, A.; Amadei, A.; Salvio, R.; D'Abramo, M. Modelling Complex Bimolecular Reactions in a Condensed Phase: The Case of Phosphodiester Hydrolysis. Molecules (Basel, Switzerland) 2023, 28, 2152. doi:10.3390/molecules28052152
- Zheng, Q.; Tian, C.; Zhang, Y.; Bai, M.; Liang, P.; Bian, Y. Studies on DNA fragmentation and cell integrity of rapidly hydroxyl radical inactivated Microcystis aeruginosa. Chemical Engineering Journal 2023, 454, 140414. doi:10.1016/j.cej.2022.140414
- Kaur, R.; Aboelnga, M. M.; Nikkel, D. J.; Wetmore, S. D. The metal dependence of single-metal mediated phosphodiester bond cleavage: a QM/MM study of a multifaceted human enzyme. Physical chemistry chemical physics : PCCP 2022, 24, 29130–29140. doi:10.1039/d2cp04338f
- Xu, S.; Del Pozo, J.; Romiti, F.; Fu, Y.; Mai, B. K.; Morrison, R. J.; Lee, K.; Hu, S.; Koh, M. J.; Lee, J.; Li, X.; Liu, P.; Hoveyda, A. H. Diastereo- and enantioselective synthesis of compounds with a trifluoromethyl- and fluoro-substituted carbon centre. Nature chemistry 2022, 14, 1459–1469. doi:10.1038/s41557-022-01054-4
- Lu, C.; Xu, Y.; Huang, P.-J. J.; Zandieh, M.; Wang, Y.; Zheng, J.; Liu, J. Protection of DNA by metal ions at 95 °C: from lower critical solution temperature (LCST) behavior to coordination-driven self-assembly. Nanoscale 2022, 14, 14613–14622. doi:10.1039/d2nr03461a