Supporting Information
Supporting Information File 1: Synthetic procedures, characterization data and copies of spectra. | ||
Format: PDF | Size: 2.2 MB | Download |
Cite the Following Article
Hypervalent iodine-guided electrophilic substitution: para-selective substitution across aryl iodonium compounds with benzyl groups
Cyrus Mowdawalla, Faiz Ahmed, Tian Li, Kiet Pham, Loma Dave, Grace Kim and I. F. Dempsey Hyatt
Beilstein J. Org. Chem. 2018, 14, 1039–1045.
https://doi.org/10.3762/bjoc.14.91
How to Cite
Mowdawalla, C.; Ahmed, F.; Li, T.; Pham, K.; Dave, L.; Kim, G.; Hyatt, I. F. D. Beilstein J. Org. Chem. 2018, 14, 1039–1045. doi:10.3762/bjoc.14.91
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 135.4 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Yoshimura, A.; Zhdankin, V. V. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chemical reviews 2024, 124, 11108–11186. doi:10.1021/acs.chemrev.4c00303
- Pan, C.; Wang, L.; Han, J. Synthesis of Versatile Aryliodine Synthons by Aryliodonium Rearrangement Reactions. Asian Journal of Organic Chemistry 2024, 13. doi:10.1002/ajoc.202400129
- Sakthivel, K.; Kole, P. B.; Mamgain, R.; Singh, F. V. Iodine(III)-Based Hypervalent Iodine Electrophiles in Organic Synthesis. Current Organic Chemistry 2022, 26, 1917–1934. doi:10.2174/1385272827666230103110651
- Sihag, M.; Soni, R.; Rani, N.; Kinger, M.; Kumar Aneja, D. Recent Synthetic Applications of Hypervalent Iodine Reagents. A Review in Three Installments: Installment II. Organic Preparations and Procedures International 2022, 55, 99–159. doi:10.1080/00304948.2022.2114236
- Xu, Z.; Cai, Y.; Zhao, Y. doi:10.1002/9783527834242.chf0168
- Liang, Y.; Peng, B. Revisiting Aromatic Claisen Rearrangement Using Unstable Aryl Sulfonium/Iodonium Species: The Strategy of Breaking Up the Whole into Parts. Accounts of chemical research 2022, 55, 2103–2122. doi:10.1021/acs.accounts.2c00263
- Weaver, G. W. Organic Reaction Mechanisms Series; Wiley, 2021; pp 191–226. doi:10.1002/9781119531975.ch5b
- Chen, W. W.; Fernández, N. P.; Baranda, M. D.; Cunillera, A.; Rodríguez, L. G.; Shafir, A.; Cuenca, A. B. Exploring benzylic gem-C(sp3)–boron–silicon and boron–tin centers as a synthetic platform. Chemical science 2021, 12, 10514–10521. doi:10.1039/d1sc01741a
- Chen, Y.; Huang, Z.-B.; Jiang, Y.; Shu, S.; Yang, S.; Shi, D.; Zhao, Y. Direct para-Selective C-H Amination of Iodobenzenes: Highly Efficient Approach for the Synthesis of Diarylamines. The Journal of organic chemistry 2021, 86, 8226–8235. doi:10.1021/acs.joc.1c00681
- Zhang, L.; Bao, W.; Liang, Y.; Pan, W.; Li, D.; Kong, L.; Wang, Z.; Peng, B. Morita–Baylis–Hillman‐Type [3,3]‐Rearrangement: Switching fromZ‐ toE‐Selective α‐Arylation by New Rearrangement Partners. Angewandte Chemie 2021, 133, 11515–11523. doi:10.1002/ange.202100497
- Zhang, L.; Bao, W.; Liang, Y.; Pan, W.; Li, D.; Kong, L.; Wang, Z.-X.; Peng, B. Morita-Baylis-Hillman-Type [3,3]-Rearrangement: Switching from Z- to E-Selective α-Arylation by New Rearrangement Partners. Angewandte Chemie (International ed. in English) 2021, 60, 11414–11422. doi:10.1002/anie.202100497
- Chen, W. W.; Cunillera, A.; Chen, D.; Lethu, S.; López de Moragas, A.; Zhu, J.; Solà, M.; Cuenca, A. B.; Shafir, A. Iodane‐Guided ortho C−H Allylation. Angewandte Chemie 2020, 132, 20376–20382. doi:10.1002/ange.202009369
- Chen, W. W.; Cunillera, A.; Chen, D.; Lethu, S.; de Moragas, A. L.; Zhu, J.; Solà, M.; Cuenca, A. B.; Shafir, A. Iodane‐Guided ortho C−H Allylation. Angewandte Chemie (International ed. in English) 2020, 59, 20201–20207. doi:10.1002/anie.202009369
- Chen, W. W.; Cuenca, A. B.; Shafir, A. The Power of Iodane‐Guided C‐H Coupling: A Group Transfer Strategy in Which a Halogen Works for Its Money. Angewandte Chemie (International ed. in English) 2020, 59, 16294–16309. doi:10.1002/anie.201908418
- Chen, W. W.; Cuenca, A. B.; Shafir, A. The Power of Iodane‐Guided C−H Coupling: A Group‐Transfer Strategy in Which a Halogen Works for Its Money. Angewandte Chemie 2020, 132, 16434–16449. doi:10.1002/ange.201908418
- Noorollah, J.; Im, H.; Siddiqi, F.; Singh, N.; Spatola, N. R.; Chaudhry, A.; Jones, T. J.; Hyatt, I. F. D. para-Selective Benzylation of Aryl Iodides by the in situ Preparation of ArIF2: a Hypervalent Iodine-Guided Electrophilic Substitution. European Journal of Organic Chemistry 2020, 2020, 2302–2305. doi:10.1002/ejoc.202000393
- Zhao, W.; Huang, X.; Zhan, Y.; Zhang, Q.; Li, D.; Zhang, Y.; Kong, L.; Peng, B. Dearomative Dual Functionalization of Aryl Iodanes. Angewandte Chemie 2019, 131, 17370–17374. doi:10.1002/ange.201909019
- Zhao, W.; Huang, X.; Zhan, Y.; Zhang, Q.; Li, D.; Zhang, Y.; Kong, L.; Peng, B. Dearomative Dual Functionalization of Aryl Iodanes. Angewandte Chemie (International ed. in English) 2019, 58, 17210–17214. doi:10.1002/anie.201909019
- Hyatt, I. F. D.; Dave, L.; David, N.; Kaur, K.; Medard, M.; Mowdawalla, C. Hypervalent iodine reactions utilized in carbon–carbon bond formations. Organic & biomolecular chemistry 2019, 17, 7822–7848. doi:10.1039/c9ob01267b
- Matsuoka, K.; Komami, N.; Kojima, M.; Yoshino, T.; Matsunaga, S. Synthesis of Heteroaryl Iodanes(III) via ipso‐Substitution Reactions Using Iodine Triacetate Assisted by HFIP. Asian Journal of Organic Chemistry 2019, 8, 1107–1110. doi:10.1002/ajoc.201900200