Supporting Information
| Supporting Information File 1: Experimental procedures, characterization data, copies of the 1H, 13C, and 19F NMR spectra. | ||
| Format: PDF | Size: 4.3 MB | Download |
Cite the Following Article
Hypervalent iodine(III)-mediated decarboxylative acetoxylation at tertiary and benzylic carbon centers
Kensuke Kiyokawa, Daichi Okumatsu and Satoshi Minakata
Beilstein J. Org. Chem. 2018, 14, 1046–1050.
https://doi.org/10.3762/bjoc.14.92
How to Cite
Kiyokawa, K.; Okumatsu, D.; Minakata, S. Beilstein J. Org. Chem. 2018, 14, 1046–1050. doi:10.3762/bjoc.14.92
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 105.8 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Canestrari, D.; Boddu, U. R.; Pallikonda, G.; Adamo, M. F. A. Desulfurative Acetoxylation of Alkyl Benzyl Phenyl Sulfides. Chemistry 2025, 7, 131. doi:10.3390/chemistry7040131
- Ma, Z.; Zhang, L.; Wen, J.; Huang, Y.; Hu, P. Photocatalytic Decarboxylation of Carboxylic Acids by Iron Catalysis for the Construction of C(sp3)O Bonds under Visible Light. European Journal of Organic Chemistry 2025, 28. doi:10.1002/ejoc.202500579
- He, J.; Du, Y. Oxidative Reactions Mediated by Hypervalent Iodine Reagents. Comprehensive Organic Synthesis; Elsevier, 2025; pp 1–152. doi:10.1016/b978-0-323-96025-0.00095-8
- Yoshimura, A.; Zhdankin, V. V. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chemical reviews 2024, 124, 11108–11186. doi:10.1021/acs.chemrev.4c00303
- Yu, P.; Huang, X.; Wang, D.; Yi, H.; Song, C.; Li, J. Electrochemical Decarboxylative Cross-Coupling with Nucleophiles. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202402124. doi:10.1002/chem.202402124
- Acosta‐Guzmán, P.; Ojeda‐Porras, A.; Gamba‐Sánchez, D. Contemporary Approaches for Amide Bond Formation. Advanced Synthesis & Catalysis 2023, 365, 4359–4391. doi:10.1002/adsc.202301018
- Kimishima, A.; Kato, H.; Nakaguro, K.; Arai, M. Single-step construction of an acetoxypyrroloindole skeleton via tandem iodocyclization/acetoxylation of indoles. Organic & biomolecular chemistry 2022, 20, 5397–5401. doi:10.1039/d2ob01001a
- Porras, M.; Hernández, D.; González, C. C.; Boto, A. "Cut and Paste" Processes in the Search of Bioactive Products: One-Pot, Metal-free O-Radical Scission-Oxidation-Addition of C, N or P-Nucleophiles. Frontiers in chemistry 2022, 10, 884124. doi:10.3389/fchem.2022.884124
- Bosnidou, A. E.; Romero, R. M. doi:10.1002/9783527829569.ch5
- Narobe, R.; Murugesan, K.; Schmid, S.; König, B. Decarboxylative Ritter-Type Amination by Cooperative Iodine (I/III)─Boron Lewis Acid Catalysis. ACS Catalysis 2021, 12, 809–817. doi:10.1021/acscatal.1c05077
- Zeng, Z.; Feceu, A.; Sivendran, N.; Goossen, L. J. Decarboxylation‐Initiated Intermolecular Carbon−Heteroatom Bond Formation. Advanced Synthesis & Catalysis 2021, 363, 2678–2722. doi:10.1002/adsc.202100211
- Tania; Houston, S. D.; Sharp-Bucknall, L.; Poynder, T. B.; Albayer, M.; Dutton, J. L. PhI(OTf)2 Does Not Exist (Yet). Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 15863–15866. doi:10.1002/chem.202003819
- Watanabe, A.; Koyamada, K.; Miyamoto, K.; Kanazawa, J.; Uchiyama, M. Decarboxylative Bromination of Sterically Hindered Carboxylic Acids with Hypervalent Iodine(III) Reagents. Organic Process Research & Development 2020, 24, 1328–1334. doi:10.1021/acs.oprd.0c00130
- Kiyokawa, K.; Minakata, S. Iodine-Based Reagents in Oxidative Amination and Oxygenation. Synlett 2020, 31, 845–855. doi:10.1055/s-0039-1690827
- Verma, A.; Banjara, L. S.; Meena, R.; Kumar, S. Transition-Metal-Free Synthesis of N-Substituted Phenanthridinones and Spiro-isoindolinones: C(sp2)−N and C(sp2)−O Coupling through Radical Pathway. Asian Journal of Organic Chemistry 2020, 9, 105–110. doi:10.1002/ajoc.201900704
- Duhamel, T.; Martínez, M. D.; Sideri, I. K.; Muñiz, K. 1,3-Diamine Formation from an Interrupted Hofmann–LöfflerReaction: Iodine Catalyst Turnover through Ritter-Type Amination. ACS Catalysis 2019, 9, 7741–7745. doi:10.1021/acscatal.9b01566
- Kiyokawa, K.; Minakata, S. Introduction of Oxygen or Nitrogen Functionalities Utilizing Iodine Reagents. Journal of Synthetic Organic Chemistry, Japan 2018, 76, 1310–1323. doi:10.5059/yukigoseikyokaishi.76.1310
- Nanjo, T.; Kato, N.; Takemoto, Y. Oxidative Decarboxylation Enables Chemoselective, Racemization-Free Esterification: Coupling of α-Ketoacids and Alcohols Mediated by Hypervalent Iodine(III). Organic letters 2018, 20, 5766–5769. doi:10.1021/acs.orglett.8b02466
- Perry, G. J. P.; Quibell, J. M.; Panigrahi, A.; Larrosa, I. Transition-Metal-Free Decarboxylative Iodination: New Routes for Decarboxylative Oxidative Cross-Couplings. Journal of the American Chemical Society 2017, 139, 11527–11536. doi:10.1021/jacs.7b05155
Patents
- VAGLE KURT EDRIC; BHADURI SAYANTAN; YANG GUOHAN. DECARBOXYLATIVE ACETOXYLATION USING MN(II) OR MN(III) REAGENT FOR SYNTHESIS OF 4'-ACETOXY- NUCLEOSIDE AND USE THEREOF FOR SYNTHESIS OF CORRESPONDING 4'-(DIMETHOXYPHOSPHORYL)METHOXY- NUCLEOTIDE. WO 2023177866 A1, Sept 21, 2023.