Hypervalent iodine(III)-mediated decarboxylative acetoxylation at tertiary and benzylic carbon centers

Kensuke Kiyokawa, Daichi Okumatsu and Satoshi Minakata
Beilstein J. Org. Chem. 2018, 14, 1046–1050. https://doi.org/10.3762/bjoc.14.92

Supporting Information

Supporting Information File 1: Experimental procedures, characterization data, copies of the 1H, 13C, and 19F NMR spectra.
Format: PDF Size: 4.3 MB Download

Cite the Following Article

Hypervalent iodine(III)-mediated decarboxylative acetoxylation at tertiary and benzylic carbon centers
Kensuke Kiyokawa, Daichi Okumatsu and Satoshi Minakata
Beilstein J. Org. Chem. 2018, 14, 1046–1050. https://doi.org/10.3762/bjoc.14.92

How to Cite

Kiyokawa, K.; Okumatsu, D.; Minakata, S. Beilstein J. Org. Chem. 2018, 14, 1046–1050. doi:10.3762/bjoc.14.92

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 105.8 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Yoshimura, A.; Zhdankin, V. V. Recent Progress in Synthetic Applications of Hypervalent Iodine(III) Reagents. Chemical reviews 2024, 124, 11108–11186. doi:10.1021/acs.chemrev.4c00303
  • Yu, P.; Huang, X.; Wang, D.; Yi, H.; Song, C.; Li, J. Electrochemical Decarboxylative Cross-Coupling with Nucleophiles. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202402124. doi:10.1002/chem.202402124
  • Acosta‐Guzmán, P.; Ojeda‐Porras, A.; Gamba‐Sánchez, D. Contemporary Approaches for Amide Bond Formation. Advanced Synthesis & Catalysis 2023, 365, 4359–4391. doi:10.1002/adsc.202301018
  • Kimishima, A.; Kato, H.; Nakaguro, K.; Arai, M. Single-step construction of an acetoxypyrroloindole skeleton via tandem iodocyclization/acetoxylation of indoles. Organic & biomolecular chemistry 2022, 20, 5397–5401. doi:10.1039/d2ob01001a
  • Porras, M.; Hernández, D.; González, C. C.; Boto, A. "Cut and Paste" Processes in the Search of Bioactive Products: One-Pot, Metal-free O-Radical Scission-Oxidation-Addition of C, N or P-Nucleophiles. Frontiers in chemistry 2022, 10, 884124. doi:10.3389/fchem.2022.884124
  • Bosnidou, A. E.; Romero, R. M. doi:10.1002/9783527829569.ch5
  • Narobe, R.; Murugesan, K.; Schmid, S.; König, B. Decarboxylative Ritter-Type Amination by Cooperative Iodine (I/III)─Boron Lewis Acid Catalysis. ACS Catalysis 2021, 12, 809–817. doi:10.1021/acscatal.1c05077
  • Zeng, Z.; Feceu, A.; Sivendran, N.; Goossen, L. J. Decarboxylation‐Initiated Intermolecular Carbon−Heteroatom Bond Formation. Advanced Synthesis & Catalysis 2021, 363, 2678–2722. doi:10.1002/adsc.202100211
  • Tania; Houston, S. D.; Sharp-Bucknall, L.; Poynder, T. B.; Albayer, M.; Dutton, J. L. PhI(OTf)2 Does Not Exist (Yet). Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 15863–15866. doi:10.1002/chem.202003819
  • Watanabe, A.; Koyamada, K.; Miyamoto, K.; Kanazawa, J.; Uchiyama, M. Decarboxylative Bromination of Sterically Hindered Carboxylic Acids with Hypervalent Iodine(III) Reagents. Organic Process Research & Development 2020, 24, 1328–1334. doi:10.1021/acs.oprd.0c00130
  • Kiyokawa, K.; Minakata, S. Iodine-Based Reagents in Oxidative Amination and Oxygenation. Synlett 2020, 31, 845–855. doi:10.1055/s-0039-1690827
  • Verma, A.; Banjara, L. S.; Meena, R.; Kumar, S. Transition-Metal-Free Synthesis of N-Substituted Phenanthridinones and Spiro-isoindolinones: C(sp2)−N and C(sp2)−O Coupling through Radical Pathway. Asian Journal of Organic Chemistry 2020, 9, 105–110. doi:10.1002/ajoc.201900704
  • Duhamel, T.; Martínez, M. D.; Sideri, I. K.; Muñiz, K. 1,3-Diamine Formation from an Interrupted Hofmann–LöfflerReaction: Iodine Catalyst Turnover through Ritter-Type Amination. ACS Catalysis 2019, 9, 7741–7745. doi:10.1021/acscatal.9b01566
  • Kiyokawa, K.; Minakata, S. Introduction of Oxygen or Nitrogen Functionalities Utilizing Iodine Reagents. Journal of Synthetic Organic Chemistry, Japan 2018, 76, 1310–1323. doi:10.5059/yukigoseikyokaishi.76.1310
  • Nanjo, T.; Kato, N.; Takemoto, Y. Oxidative Decarboxylation Enables Chemoselective, Racemization-Free Esterification: Coupling of α-Ketoacids and Alcohols Mediated by Hypervalent Iodine(III). Organic letters 2018, 20, 5766–5769. doi:10.1021/acs.orglett.8b02466
  • Perry, G. J. P.; Quibell, J. M.; Panigrahi, A.; Larrosa, I. Transition-Metal-Free Decarboxylative Iodination: New Routes for Decarboxylative Oxidative Cross-Couplings. Journal of the American Chemical Society 2017, 139, 11527–11536. doi:10.1021/jacs.7b05155

Patents

  • VAGLE KURT EDRIC; BHADURI SAYANTAN; YANG GUOHAN. DECARBOXYLATIVE ACETOXYLATION USING MN(II) OR MN(III) REAGENT FOR SYNTHESIS OF 4'-ACETOXY- NUCLEOSIDE AND USE THEREOF FOR SYNTHESIS OF CORRESPONDING 4'-(DIMETHOXYPHOSPHORYL)METHOXY- NUCLEOTIDE. WO 2023177866 A1, Sept 21, 2023.
Other Beilstein-Institut Open Science Activities