Unexpected polymorphism during a catalyzed mechanochemical Knoevenagel condensation

Sebastian Haferkamp, Andrea Paul, Adam A. L. Michalchuk and Franziska Emmerling
Beilstein J. Org. Chem. 2019, 15, 1141–1148. https://doi.org/10.3762/bjoc.15.110

Supporting Information

Supporting Information File 1: XRPD data and multivariate data analysis.
Format: PDF Size: 758.6 KB Download

Cite the Following Article

Unexpected polymorphism during a catalyzed mechanochemical Knoevenagel condensation
Sebastian Haferkamp, Andrea Paul, Adam A. L. Michalchuk and Franziska Emmerling
Beilstein J. Org. Chem. 2019, 15, 1141–1148. https://doi.org/10.3762/bjoc.15.110

How to Cite

Haferkamp, S.; Paul, A.; Michalchuk, A. A. L.; Emmerling, F. Beilstein J. Org. Chem. 2019, 15, 1141–1148. doi:10.3762/bjoc.15.110

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 655.8 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Ardila‐Fierro, K. J.; Hernández, J. G. Intermediates in Mechanochemical Reactions. Angewandte Chemie 2024, 136. doi:10.1002/ange.202317638
  • Ardila-Fierro, K. J.; Hernández, J. G. Intermediates in Mechanochemical Reactions. Angewandte Chemie (International ed. in English) 2024, 63, e202317638. doi:10.1002/anie.202317638
  • Wang, G.-W.; Wang, N.; Pan, H.; Shao, G.; Chen, J.-S. Mechanochemistry in organic synthesis. Introduction to Condensed Matter Chemistry; Elsevier, 2024; pp 73–103. doi:10.1016/b978-0-443-16140-7.00012-2
  • Scheurrell, K.; B Martins, I. C.; Murray, C.; Emmerling, F. Exploring the role of solvent polarity in mechanochemical Knoevenagel condensation: in situ investigation and isolation of reaction intermediates. Physical chemistry chemical physics : PCCP 2023, 25, 23637–23644. doi:10.1039/d3cp02883f
  • Paul, A.; Reese, M.; Goldhammer, T.; Schmalsch, C.; Weber, J.; Bannick, C. G. Spectroscopic evidence for adsorption of natural organic matter on microplastics. Applied Research 2023, 3. doi:10.1002/appl.202200126
  • Michalchuk, A. A. L. The mechanochemical excitation of crystalline LiN3. Faraday discussions 2023, 241, 230–249. doi:10.1039/d2fd00112h
  • Boldyreva, E. Spiers Memorial Lecture: Mechanochemistry, tribochemistry, mechanical alloying - retrospect, achievements and challenges. Faraday discussions 2023, 241, 9–62. doi:10.1039/d2fd00149g
  • Guilherme Buzanich, A.; Cakir, C. T.; Radtke, M.; Haider, M. B.; Emmerling, F.; F M de Oliveira, P.; Michalchuk, A. A. L. Dispersive x-ray absorption spectroscopy for time-resolved in situ monitoring of mechanochemical reactions. The Journal of chemical physics 2022, 157, 214202. doi:10.1063/5.0130673
  • Zänker, S.; Scholz, G.; Marquardt, J.; Emmerling, F. Structural changes in Ba‐compounds of different hardness induced by high‐energy ball milling – evidenced by 137Ba NMR and X‐ray powder diffraction. Zeitschrift für anorganische und allgemeine Chemie 2022, 648. doi:10.1002/zaac.202200026
  • Michalchuk, A. A. L.; Emmerling, F. Zeitaufgelöste In‐Situ‐Untersuchungen von mechanochemischen Reaktionen. Angewandte Chemie 2022, 134. doi:10.1002/ange.202117270
  • Michalchuk, A. A. L.; Emmerling, F. Time-Resolved In Situ Monitoring of Mechanochemical Reactions. Angewandte Chemie (International ed. in English) 2022, 61, e202117270. doi:10.1002/anie.202117270
  • Jose, A.; Guest, D.; LeGay, R.; Tizzard, G. J.; Coles, S. J.; Derveni, M.; Wright, E.; Marrison, L.; Lee, A. A.; Morris, A.; Robinson, M.; von Delft, F.; Fearon, D.; Koekemoer, L.; Matviuk, T.; Aimon, A.; Schofield, C. J.; Malla, T. R.; London, N.; Greenland, B. W.; Bagley, M. C.; Spencer, J.; The Covid Moonshot Consortium. Expanding the Repertoire of Low-Molecular-Weight Pentafluorosulfanyl-Substituted Scaffolds. ChemMedChem 2022, 17, e202100641. doi:10.1002/cmdc.202100641
  • Michalchuk, A. A. L.; Kabelitz, A.; Emmerling, F. Solid State Development and Processing of Pharmaceutical Molecules; Wiley, 2021; pp 215–248. doi:10.1002/9783527823048.ch4-8
  • Lukin, S.; Užarević, K.; Halasz, I. Raman spectroscopy for real-time and in situ monitoring of mechanochemical milling reactions. Nature protocols 2021, 16, 3492–3521. doi:10.1038/s41596-021-00545-x
  • Michalchuk, A. A. L.; Boldyreva, E. V.; Belenguer, A. M.; Emmerling, F.; Boldyrev, V. V. Tribochemistry, Mechanical Alloying, Mechanochemistry: What is in a Name?. Frontiers in chemistry 2021, 9, 685789. doi:10.3389/fchem.2021.685789
  • Wilke, M.; Gawryluk, D. J.; Casati, N. Metastability and Seeding Effects in the Mechanochemical Hybrid Lead(II) Iodide Formation. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 5944–5955. doi:10.1002/chem.202004431
  • Michalchuk, A. A. L.; Kabelitz, A.; Emmerling, F. Monitoring mechanochemical processes in situ and in real time. Nontraditional Activation Methods in Green and Sustainable Applications; Elsevier, 2021; pp 369–419. doi:10.1016/b978-0-12-819009-8.00004-9
  • Oliveira, P. F.; Michalchuk, A. A. L.; Marquardt, J.; Feiler, T.; Prinz, C.; Torresi, R. M.; Camargo, P. H. C.; Emmerling, F. Investigating the role of reducing agents on mechanosynthesis of Au nanoparticles. CrystEngComm 2020, 22, 6261–6267. doi:10.1039/d0ce00826e
  • Ardila-Fierro, K. J.; Lukin, S.; Etter, M.; Užarević, K.; Halasz, I.; Bolm, C.; Hernández, J. G. Direct Visualization of a Mechanochemically Induced Molecular Rearrangement. Angewandte Chemie (International ed. in English) 2020, 59, 13458–13462. doi:10.1002/anie.201914921
  • Ardila‐Fierro, K. J.; Lukin, S.; Etter, M.; Užarević, K.; Halasz, I.; Bolm, C.; Hernández, J. G. Direct Visualization of a Mechanochemically Induced Molecular Rearrangement. Angewandte Chemie 2020, 132, 13560–13564. doi:10.1002/ange.201914921
Other Beilstein-Institut Open Science Activities