Supporting Information
Supporting Information File 1: Additional information and figures. | ||
Format: PDF | Size: 506.8 KB | Download |
Cite the Following Article
Mechanochemical synthesis of hyper-crosslinked polymers: influences on their pore structure and adsorption behaviour for organic vapors
Sven Grätz, Sebastian Zink, Hanna Kraffczyk, Marcus Rose and Lars Borchardt
Beilstein J. Org. Chem. 2019, 15, 1154–1161.
https://doi.org/10.3762/bjoc.15.112
How to Cite
Grätz, S.; Zink, S.; Kraffczyk, H.; Rose, M.; Borchardt, L. Beilstein J. Org. Chem. 2019, 15, 1154–1161. doi:10.3762/bjoc.15.112
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 148.1 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Señorans, S.; Rangel-Rangel, E.; Maya, E.; Díaz, L. Hypercrosslinked porous polymer as catalyst for efficient biodiesel production. Reactive and Functional Polymers 2024, 202, 105964. doi:10.1016/j.reactfunctpolym.2024.105964
- Zhou, S.; Qiu, T.; Wang, H.; Tang, B.; Su, Y.; Nan, T.; Dong, J.; Wang, Z.; Liu, D.; Zhu, G. Flexible porous organic polymers constructed using C(sp3)-C(sp3) coupling reactions and their high methane-storage capacity. Chemical science 2024, 15, 10830–10837. doi:10.1039/d4sc01289e
- Krusenbaum, A.; Hinojosa, S. K.; Fabig, S.; Becker, V.; Grätz, S.; Borchardt, L. Rationalizing the formation of porosity in mechanochemically-synthesized polymers. Physical chemistry chemical physics : PCCP 2023, 25, 16781–16789. doi:10.1039/d3cp02128a
- Chanchaona, N.; Ding, L.; Lin, S.; Sarwar, S.; Dimartino, S.; Fletcher, A. J.; Dawson, D. M.; Konstas, K.; Hill, M. R.; Lau, C. H. Flow synthesis of hypercrosslinked polymers with additional microporosity that enhances CO2/N2separation. Journal of Materials Chemistry A 2023, 11, 9859–9867. doi:10.1039/d2ta09253k
- Al-Ithawi, W. K. A.; Khasanov, A. F.; Kovalev, I. S.; Nikonov, I. L.; Platonov, V. A.; Kopchuk, D. S.; Santra, S.; Zyryanov, G. V.; Ranu, B. C. TM-Free and TM-Catalyzed Mechanosynthesis of Functional Polymers. Polymers 2023, 15, 1853. doi:10.3390/polym15081853
- Krusenbaum, A.; Kraus, F. J. L.; Hutsch, S.; Grätz, S.; Höfler, M. V.; Gutmann, T.; Borchardt, L. The Rapid Mechanochemical Synthesis of Microporous Covalent Triazine Networks: Elucidating the Role of Chlorinated Linkers by a Solvent‐Free Approach. Advanced Sustainable Systems 2023, 7. doi:10.1002/adsu.202200477
- Borrero-López, A. M.; Celzard, A.; Fierro, V. Eco-Friendly Production of Hyper-Cross-Linked Polymers Using Mechanosynthesis and Bioresources: A Critical Review. ACS Sustainable Chemistry & Engineering 2022, 10, 16090–16112. doi:10.1021/acssuschemeng.2c04954
- Pujol, Q.; Weber, G.; Bellat, J.-P.; Grätz, S.; Krusenbaum, A.; Borchardt, L.; Bezverkhyy, I. Potential of novel porous materials for capture of toluene traces in air under humid conditions. Microporous and Mesoporous Materials 2022, 344, 112204. doi:10.1016/j.micromeso.2022.112204
- Krusenbaum, A.; Grätz, S.; Tigineh, G. T.; Borchardt, L.; Kim, J. G. The mechanochemical synthesis of polymers. Chemical Society reviews 2022, 51, 2873–2905. doi:10.1039/d1cs01093j
- Hwang, S.; Grätz, S.; Borchardt, L. A guide to direct mechanocatalysis. Chemical communications (Cambridge, England) 2022, 58, 1661–1671. doi:10.1039/d1cc05697b
- Ramirez-Vidal, P.; Sdanghi, G.; Celzard, A.; Fierro, V. High hydrogen release by cryo-adsorption and compression on porous materials. International Journal of Hydrogen Energy 2022, 47, 8892–8915. doi:10.1016/j.ijhydene.2021.12.235
- Krusenbaum, A.; Geisler, J.; Kraus, F. J. L.; Grätz, S.; Höfler, M. V.; Gutmann, T.; Borchardt, L. The mechanochemical Friedel-Crafts polymerization as a solvent-free cross-linking approach toward microporous polymers. Journal of Polymer Science 2021, 60, 62–71. doi:10.1002/pol.20210606
- Yang, L.; Sun, L.; Zhao, Y.; Sun, J.; Deng, Q.-W.; Wang, H.; Deng, W. Digital-intellectual design of microporous organic polymers. Physical chemistry chemical physics : PCCP 2021, 23, 22835–22853. doi:10.1039/d1cp03456a
- Wenting, S.; Pan, L.; Li, J.; Xu, N.; Zhifang, G. Enhancing the application of mechanochemistry in the synthesis of high-concentration polycarboxylate superplasticizer: is aqueous copolymerization needed?. Journal of Dispersion Science and Technology 2021, 1–9.
- Sun, W.; Pan, L.; Li, J.; Xu, N.; Guo, Z. Enhancing the application of mechanochemistry in the synthesis of high-concentration polycarboxylate superplasticizer: is aqueous copolymerization needed?. Journal of Dispersion Science and Technology 2021, 44, 660–668. doi:10.1080/01932691.2021.1960168
- Clerigué, J.; Ramos, M. T.; Menéndez, J. C. Solid-State Green Organic Reactions. Materials Horizons: From Nature to Nanomaterials; Springer Singapore, 2021; pp 85–109. doi:10.1007/978-981-33-6897-2_6
- Báti, G.; Csókás, D.; Yong, T.; Tam, S. M.; Shi, R. R. S.; Webster, R. D.; Pápai, I.; García, F.; Stuparu, M. C. Mechanochemical Synthesis of Corannulene‐Based Curved Nanographenes. Angewandte Chemie 2020, 132, 21804–21810. doi:10.1002/ange.202007815
- Báti, G.; Csókás, D.; Yong, T.; Tam, S. M.; Shi, R. R. S.; Webster, R. D.; Pápai, I.; García, F.; Stuparu, M. C. Mechanochemical Synthesis of Corannulene-Based Curved Nanographenes. Angewandte Chemie (International ed. in English) 2020, 59, 21620–21626. doi:10.1002/anie.202007815
- Lee, J.-S. M.; Kurihara, T.; Horike, S. Five-Minute Mechanosynthesis of Hypercrosslinked Microporous Polymers. Chemistry of Materials 2020, 32, 7694–7702. doi:10.1021/acs.chemmater.0c01726
- Wang, S.; Dai, T.; Lu, Y.; Chen, Q.; Feng, L.; Sui, Z. Fullerene-bearing porous polymer via ball-milling approach and its palladium composite for catalytic deallylation. Microporous and Mesoporous Materials 2020, 302, 110187. doi:10.1016/j.micromeso.2020.110187