Supporting Information
Supporting Information File 1: Further details of equipment specifications and compound characterisation. | ||
Format: PDF | Size: 1.7 MB | Download |
Cite the Following Article
Fluorine-containing substituents: metabolism of the α,α-difluoroethyl thioether motif
Andrea Rodil, Alexandra M. Z. Slawin, Nawaf Al-Maharik, Ren Tomita and David O’Hagan
Beilstein J. Org. Chem. 2019, 15, 1441–1447.
https://doi.org/10.3762/bjoc.15.144
How to Cite
Rodil, A.; Slawin, A. M. Z.; Al-Maharik, N.; Tomita, R.; O’Hagan, D. Beilstein J. Org. Chem. 2019, 15, 1441–1447. doi:10.3762/bjoc.15.144
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 130.7 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Liu, T.; Feng, X.; Du, H. Asymmetric Partial Hydrosilylation of 2,2‐Difluoro‐1,3‐diketones with Chiral Frustrated Lewis Pairs. Chinese Journal of Chemistry 2024, 42, 853–857. doi:10.1002/cjoc.202300675
- Xu, J.; Liu, J.-W.; Wang, R.; Yang, J.; Zhao, K.-K.; Xu, H.-J. Construction of C–X (X = S, O, Se) Bonds via Lewis Acid-Promoted Functionalization of Trifluoromethylarenes. ACS Catalysis 2023, 13, 7339–7346. doi:10.1021/acscatal.3c00669
- Messara, A.; Panossian, A.; Mikami, K.; Hanquet, G.; Leroux, F. R. Direct Deprotonative Functionalization of α,α‐Difluoromethyl Ketones using a Catalytic Organosuperbase. Angewandte Chemie 2023, 135. doi:10.1002/ange.202215899
- Messara, A.; Panossian, A.; Mikami, K.; Hanquet, G.; Leroux, F. R. Direct Deprotonative Functionalization of α,α-Difluoromethyl Ketones using a Catalytic Organosuperbase. Angewandte Chemie (International ed. in English) 2023, 62, e202215899. doi:10.1002/anie.202215899
- Khan, M. F.; Murphy, C. D. Fluorotelomer alcohols are efficiently biotransformed by Cunninghamella elegans. Environmental science and pollution research international 2022, 30, 23613–23623. doi:10.1007/s11356-022-23901-0
- Shi, H.-S.; Li, S.-H.; Zhang, F.-G.; Ma, J.-A. Catalytic regioselective construction of phenylthio- and phenoxyldifluoroalkyl tetrazoles from difluorodiazoketones. Chemical communications (Cambridge, England) 2021, 57, 13744–13747. doi:10.1039/d1cc05890h
- Messara, A.; Vanthuyne, N.; Diter, P.; Elhabiri, M.; Panossian, A.; Hanquet, G.; Magnier, E.; Leroux, F. R. Aryl Fluoroalkyl Sulfoxides: Optical Stability and pKa Measurement. European Journal of Organic Chemistry 2021, 2021, 5019–5026. doi:10.1002/ejoc.202100816
- O'Hagan, D. Polar Organofluorine Substituents: Multivicinal Fluorines on Alkyl Chains and Alicyclic Rings. Chemistry (Weinheim an der Bergstrasse, Germany) 2020, 26, 7981–7997. doi:10.1002/chem.202000178
- Danchin, A. Isobiology: A Variational Principle for Exploring Synthetic Life. Chembiochem : a European journal of chemical biology 2020, 21, 1781–1792. doi:10.1002/cbic.202000060
- Johnson, B. M.; Shu, Y.-Z.; Zhuo, X.; Meanwell, N. A. Metabolic and Pharmaceutical Aspects of Fluorinated Compounds. Journal of medicinal chemistry 2020, 63, 6315–6386. doi:10.1021/acs.jmedchem.9b01877