Molecular basis for the plasticity of aromatic prenyltransferases in hapalindole biosynthesis

Takayoshi Awakawa and Ikuro Abe
Beilstein J. Org. Chem. 2019, 15, 1545–1551. https://doi.org/10.3762/bjoc.15.157

Cite the Following Article

Molecular basis for the plasticity of aromatic prenyltransferases in hapalindole biosynthesis
Takayoshi Awakawa and Ikuro Abe
Beilstein J. Org. Chem. 2019, 15, 1545–1551. https://doi.org/10.3762/bjoc.15.157

How to Cite

Awakawa, T.; Abe, I. Beilstein J. Org. Chem. 2019, 15, 1545–1551. doi:10.3762/bjoc.15.157

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 154.4 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • do Amaral, S. C.; Xavier, L. P.; Vasconcelos, V.; Santos, A. V. Cyanobacteria: A Promising Source of Antifungal Metabolites. Marine drugs 2023, 21, 359. doi:10.3390/md21060359
  • Zhang, Y.; Goto, Y.; Suga, H. Discovery, biochemical characterization, and bioengineering of cyanobactin prenyltransferases. Trends in biochemical sciences 2022, 48, 360–374. doi:10.1016/j.tibs.2022.11.002
  • Eaton, S. A.; Ronnebaum, T. A.; Roose, B. W.; Christianson, D. W. Structural Basis of Substrate Promiscuity and Catalysis by the Reverse Prenyltransferase N-Dimethylallyl-l-tryptophan Synthase from Fusarium fujikuroi. Biochemistry 2022, 61, 2025–2035. doi:10.1021/acs.biochem.2c00350
  • Zhang, Y.; Hamada, K.; Nguyen, D. T.; Inoue, S.; Satake, M.; Kobayashi, S.; Okada, C.; Ogata, K.; Okada, M.; Sengoku, T.; Goto, Y.; Suga, H. LimF is a versatile prenyltransferase for histidine-C-geranylation on diverse non-natural substrates. Nature Catalysis 2022, 5, 682–693. doi:10.1038/s41929-022-00822-2
  • Gao, B.; Yang, B.; Feng, X.; Li, C. Recent advances in the biosynthesis strategies of nitrogen heterocyclic natural products. Natural product reports 2022, 39, 139–162. doi:10.1039/d1np00017a
  • Belen'kii, L. I.; Gazieva, G. A.; Evdokimenkova, Y. B.; Soboleva, N. O. The literature of heterocyclic chemistry, Part XIX, 2019. Advances in Heterocyclic Chemistry; Elsevier, 2022; pp 225–295. doi:10.1016/bs.aihch.2021.09.002
  • Couillaud, J.; Duquesne, K.; Iacazio, G. Extension of the Terpene Chemical Space: the Very First Biosynthetic Steps. Chembiochem : a European journal of chemical biology 2021, 23, e202100642. doi:10.1002/cbic.202100642
  • Al-Yousef, H. M.; Amina, M. Phytoconstituents and pharmacological activities of cyanobacterium Fischerella ambigua. Arabian Journal of Chemistry 2021, 14, 103153. doi:10.1016/j.arabjc.2021.103153
  • Chang, H. Y.; Cheng, T. H.; Wang, A. H.-J. Structure, catalysis, and inhibition mechanism of prenyltransferase. IUBMB life 2020, 73, 40–63. doi:10.1002/iub.2418
  • Johnson, B. P.; Scull, E. M.; Dimas, D. A.; Bavineni, T.; Bandari, C.; Batchev, A. L.; Gardner, E. D.; Nimmo, S. L.; Singh, S. Acceptor substrate determines donor specificity of an aromatic prenyltransferase: expanding the biocatalytic potential of NphB. Applied microbiology and biotechnology 2020, 104, 4383–4395. doi:10.1007/s00253-020-10529-8
Other Beilstein-Institut Open Science Activities