Water inside β-cyclodextrin cavity: amount, stability and mechanism of binding

Stiliyana Pereva, Valya Nikolova, Silvia Angelova, Tony Spassov and Todor Dudev
Beilstein J. Org. Chem. 2019, 15, 1592–1600. https://doi.org/10.3762/bjoc.15.163

Supporting Information

Supporting Information File 1: Additional data from DFT computations at the M062X/6-311++G(d,p)//M062X/6-31G(d,p) level of theory.
Format: PDF Size: 322.5 KB Download

Cite the Following Article

Water inside β-cyclodextrin cavity: amount, stability and mechanism of binding
Stiliyana Pereva, Valya Nikolova, Silvia Angelova, Tony Spassov and Todor Dudev
Beilstein J. Org. Chem. 2019, 15, 1592–1600. https://doi.org/10.3762/bjoc.15.163

How to Cite

Pereva, S.; Nikolova, V.; Angelova, S.; Spassov, T.; Dudev, T. Beilstein J. Org. Chem. 2019, 15, 1592–1600. doi:10.3762/bjoc.15.163

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.1 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Jafari, N.; Douglas, J. T.; Neuenswander, S. A.; Kelich, P.; Hageman, M. J. β-Cyclodextrin derivatives bind aromatic side chains of the cyclic peptide lanreotide. Journal of pharmaceutical sciences 2024. doi:10.1016/j.xphs.2024.10.042
  • Pereva, S.; Dobrev, S.; Sarafska, T.; Nikolova, V.; Angelova, S.; Spassov, T.; Dudev, T. Deciphering the mechanism of γ-cyclodextrin's hydrophobic cavity hydration: an integrated experimental and theoretical study. Beilstein journal of organic chemistry 2024, 20, 2635–2643. doi:10.3762/bjoc.20.221
  • Naik, T.; Berdnikova, D. V.; Sundararajan, M.; Dutta Choudhury, S. Manifold Fluorescence Enhancement of a Styryl(pyridinium)-chromene Hybrid Dye upon Binding with an Elongated β-Cyclodextrin Cavity. The journal of physical chemistry. B 2024, 128, 9396–9404. doi:10.1021/acs.jpcb.4c04608
  • Bognanni, N.; Scuderi, C.; Giglio, V.; Spiteri, F.; La Piana, L.; Condorelli, D.; Barresi, V.; Vecchio, G. Cyclodextrin Dimers Functionalized with Biotin as Nanocapsules for Active Doxorubicin Delivery Against MCF-7 Breast Cell Line. ChemMedChem 2024, e202400368. doi:10.1002/cmdc.202400368
  • Singh, P.; Mahar, R. Cyclodextrin in drug delivery: Exploring scaffolds, properties, and cutting-edge applications. International journal of pharmaceutics 2024, 662, 124485. doi:10.1016/j.ijpharm.2024.124485
  • Wang, X.; Huang, J.; Yang, D.; Huang, T.; Yang, Y.; Tu, J.; Zou, J.; Sun, H.; Zhao, X.; Yang, R. Different Effects of Strong-Bonded Water with Different Degrees of Substitution of Sodium Sulfobutylether-β-cyclodextrin on Encapsulation. Pharmaceutics 2024, 16, 919. doi:10.3390/pharmaceutics16070919
  • Rodríguez-Varillas, S.; Fontanil, T.; Espina Casado, J.; Fernández-González, A.; Badía Laíño, R. Surface modification of carbon dots with cyclodextrins as potential biocompatible photoluminescent delivery/bioimaging nanoplatform. Analytica chimica acta 2024, 1318, 342948. doi:10.1016/j.aca.2024.342948
  • Alsadun, N. S.; Alfadil, A. A.; Elbashir, A. A.; Suliman, F. O.; Ali Omar, M. M.; Ahmed, A. Y. Polyaromatic Hydrocarbon Inclusion Complexes with 2-Hydroxylpropyl-β/γ-Cyclodextrin: Molecular Dynamic Simulation and Spectroscopic Studies. Molecules (Basel, Switzerland) 2024, 29, 2535. doi:10.3390/molecules29112535
  • Sarafska, T. P.; Spassova, M. I.; Dudev, T. M.; Pereva, S. M.; Stoyanov, S. D.; Spassov, T. G. Easy and Effective Method for α-CD:N2O Host-Guest Complex Formation. International journal of molecular sciences 2024, 25, 5472. doi:10.3390/ijms25105472
  • Yin, Y.-D.; Yang, L.; Song, X.-T.; Hu, J.; Chen, F.-F.; Xu, M.; Gu, Z.-Y. Determination of Acetylamantadine by γ-Cyclodextrin-Assisted α-HL Nanopore for Potential Cancer Prediagnosis. Analytical chemistry 2024, 96, 8325–8331. doi:10.1021/acs.analchem.3c04986
  • Dudev, T.; Spassov, T. Inclusion Complexes between β-Cyclodextrin and Gaseous Substances—N2O, CO2, HCN, NO2, SO2, CH4 and CH3CH2CH3: Role of the Host's Cavity Hydration. Inorganics 2024, 12, 110. doi:10.3390/inorganics12040110
  • Sarafska, T.; Ivanova, S.; Dudev, T.; Tzachev, C.; Petrov, V.; Spassov, T. Enhanced Solubility of Ibuprofen by Complexation with β-Cyclodextrin and Citric Acid. Molecules (Basel, Switzerland) 2024, 29, 1650. doi:10.3390/molecules29071650
  • Ge, Y.-X.; Zhang, Z.; Yan, J.-Y.; Ma, Z.-C.; Wang, Y.-G.; Xiao, C.-R.; Zhuang, X.-M.; Gao, Y. Prediction of Human Pharmacokinetics of E0703, a Novel Radioprotective Agent, Using Physiologically Based Pharmacokinetic Modeling and an Interspecies Extrapolation Approach. International journal of molecular sciences 2024, 25, 3047. doi:10.3390/ijms25053047
  • Huang, J.; Wang, X.; Huang, T.; Yang, Y.; Tu, J.; Zou, J.; Yang, H.; Yang, R. Application of sodium sulfobutylether-β-cyclodextrin based on encapsulation. Carbohydrate polymers 2024, 333, 121985. doi:10.1016/j.carbpol.2024.121985
  • Lan, L.; Jiang, S.; Hu, X.; Zou, L.; Ren, T. Nanocellulose-based antimicrobial aerogels with humidity-triggered release of cinnamaldehyde. International journal of biological macromolecules 2024, 262, 130108. doi:10.1016/j.ijbiomac.2024.130108
  • Li, N.; Feng, B.; Bi, Y.; Kong, F.; Wang, Z.; Tan, S. Sulfobutyl ether cyclodextrin inclusion complexes containing tea polyphenols: Preparation, characterization, antioxidant activity, α-glucosidase inhibition, and in vitro release property. Journal of Molecular Structure 2024, 1295, 136686. doi:10.1016/j.molstruc.2023.136686
  • Sarafska, T.; Ivanova, S.; Dudev, T.; Petrov, V.; Spassov, T. Beta-cyclodextrin – Citric acid complexation by ball milling and annealing. Journal of Molecular Structure 2024, 1295, 136701. doi:10.1016/j.molstruc.2023.136701
  • Chen, B.; Chen, S.; Wen, M.; Zhu, J.; Tong, S. Investigation of three Sulfobutylether-β-cyclodextrin bonded magnetic nanoparticles in enantioselective Liquid-Liquid extraction. Journal of Molecular Liquids 2023, 391, 123362. doi:10.1016/j.molliq.2023.123362
  • Varalakshmi, G. S.; Pawar, C. S.; Selvam, R.; Pearl, W. G.; Manikantan, V.; Pillai, A. S.; Alexander, A.; Rajendra Prasad, N.; Enoch, I. V. Magnetic and photothermally active iron sulfide nanocarriers: Enhanced in vitro activity of dysprosium-doped material. Inorganic Chemistry Communications 2023, 156, 111159. doi:10.1016/j.inoche.2023.111159
  • Poudel, H.; RanguMagar, A. B.; Singh, P.; Oluremi, A.; Ali, N.; Watanabe, F.; Batta-Mpouma, J.; Kim, J. W.; Ghosh, A.; Ghosh, A. Guar-Based Injectable Hydrogel for Drug Delivery and In Vitro Bone Cell Growth. Bioengineering (Basel, Switzerland) 2023, 10, 1088. doi:10.3390/bioengineering10091088
Other Beilstein-Institut Open Science Activities