Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage

Gagandeep Kour Reen, Ashok Kumar and Pratibha Sharma
Beilstein J. Org. Chem. 2019, 15, 1612–1704. https://doi.org/10.3762/bjoc.15.165

Cite the Following Article

Recent advances on the transition-metal-catalyzed synthesis of imidazopyridines: an updated coverage
Gagandeep Kour Reen, Ashok Kumar and Pratibha Sharma
Beilstein J. Org. Chem. 2019, 15, 1612–1704. https://doi.org/10.3762/bjoc.15.165

How to Cite

Reen, G. K.; Kumar, A.; Sharma, P. Beilstein J. Org. Chem. 2019, 15, 1612–1704. doi:10.3762/bjoc.15.165

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 1.4 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Gadekar, A. B.; Sonam; Shinde, V. N.; Bhawani; Rangan, K.; Kumar, A. Visible Light‐Driven Difluoroalkoxylation of Imidazopyridines Using N‐Fluorobenzenesulfonimide as Fluorinating Agent. Advanced Synthesis & Catalysis 2024. doi:10.1002/adsc.202400755
  • Maikhuri, V. K.; Mathur, D.; Chaudhary, A.; Kumar, R.; Parmar, V. S.; Singh, B. K. Transition-Metal Catalyzed Synthesis of Pyrimidines: Recent Advances, Mechanism, Scope and Future Perspectives. Topics in current chemistry (Cham) 2024, 382, 4. doi:10.1007/s41061-024-00451-2
  • Narayan, A.; Patel, S.; Baile, S. B.; Jain, S.; Sharma, S. Imidazo[1,2-A]Pyridine: Potent Biological Activity, SAR and Docking Investigations (2017-2022). Infectious disorders drug targets 2024, 24, e200324228067. doi:10.2174/0118715265274067240223040333
  • Kaur, P.; Gurjar, K. K.; Arora, T.; Bharti, D.; Kaur, M.; Kumar, V.; Parkash, J.; Kumar, R. Efficient synthesis and mechanistic insights for the formation of imidazo[1,2-a]pyridines via multicomponent decarboxylative coupling using chitosan-supported copper catalysts. Molecular Catalysis 2023, 550, 113582. doi:10.1016/j.mcat.2023.113582
  • Liu, X.; Guo, X.; Jiang, Z.; Li, C.; Nan, Z.; Liu, Y. Photocatalyzed intermolecular C–N bond formation for the synthesis of imidazo[1,2-a]pyridines. Tetrahedron Letters 2023, 129, 154746. doi:10.1016/j.tetlet.2023.154746
  • Meena, N.; Shinde, V. N.; Sonam; Swami, P. N.; Rangan, K.; Kumar, A. Catalyst-Controlled Regiodivergent Oxidative Annulation of 2-Arylimidazo[1,2-a]pyridines with Cinnamaldehyde Derivatives for Construction of Fused N-Heterocyclic Frameworks. The Journal of organic chemistry 2023, 88, 12902–12913. doi:10.1021/acs.joc.3c00717
  • Nikoshvili, L. Z.; Matveeva, V. G. Recent Progress in Pd-Catalyzed Tandem Processes. Catalysts 2023, 13, 1213. doi:10.3390/catal13081213
  • Vchislo, N. V.; Fedoseeva, V. G.; Verochkina, E. A. The Reactions of p-Tosylmethyl Isocyanide with Aldehydes in the Synthesis of Heterocyclic Compounds: A Review. Mini-Reviews in Organic Chemistry 2023, 20, 372–393. doi:10.2174/1570193x19999220523113243
  • Sakhuja, R.; Kumar, A. doi:10.1002/9781119774167.ch11
  • Seth, K.; Sunny, S.; Maingle, M.; Sheeba, L.; Pathan, F. R.; J., G. S.; Juloori, H.; Gadewar, S. G. Pd-Nanoparticles-Catalyzed C(sp2)–H Arylation for the Synthesis of Functionalized Heterocycles: Recent Progress and Prospects. Synthesis 2023, 56, 611–638. doi:10.1055/a-2060-3488
  • Zhong, W.; Zhao, C.; Huang, Q.; Wu, L.; Shi, J.; Li, J.; Lu, W.; Tang, F.; Zhu, L. I2/DTBP Promoted Synthesis of C3-Carbonylated Imidazopyridines from Chromones and 2-Aminopyridines via (3+2) Cycloaddition. Synthesis 2023, 55, 2570–2580. doi:10.1055/a-2058-0119
  • Semenova, N. V.; Schmidt, E. Y.; Ushakov, I. A.; Trofimov, B. A. Acetylene-driven multi-molecular assemblies of high complexity: imidazo[1,2-a]pyridines and 5-chloro-N-[2-(imidazo[1,2-a]pyridin-6-yl)vinyl]pyridin-2-amine. Mendeleev Communications 2023, 33, 164–166. doi:10.1016/j.mencom.2023.02.005
  • Kumar, R.; Kaur, P.; Gurjar, K.; Arora, T.; Bharti, D.; Dhull, M.; Kumar, V.; Parkash, J. Efficient Synthesis and Mechanistic Insights for the Formation Of Imidazo[1,2-A]Pyridines Via Multicomponent Decarboxylative Coupling Using Chitosan-Supported Copper Catalysts. Elsevier BV 2023. doi:10.2139/ssrn.4519904
  • Morja, M. I.; Moradiya, R. B.; Chikhalia, K. H. First-row transition metal for isocyanide-involving multicomponent reactions (IMCR). Molecular diversity 2022, 27, 2895–2934. doi:10.1007/s11030-022-10583-6
  • Dai, P.; Xu, H. Novel Chlorination of Imidazo‐Fused Heterocycles via Dichloro(aryl)‐λ3‐iodanes. European Journal of Organic Chemistry 2022, 2022. doi:10.1002/ejoc.202200779
  • Mishra, N. P.; Mohapatra, S.; Das, T.; Nayak, S. Imidazo[1,2‐a]pyridine as a promising scaffold for the development of antibacterial agents. Journal of Heterocyclic Chemistry 2022, 59, 2051–2075. doi:10.1002/jhet.4534
  • Sharma, R. P.; Mahajan, S.; Slathia, N.; Kapoor, K. K. FeCl3 as an efficient catalyst for the synthesis of styrylquinoxalin-2(1H)-ones. Synthetic Communications 2022, 52, 1069–1078. doi:10.1080/00397911.2022.2070435
  • Banerjee, M.; Panjikar, P. C.; Das, D.; Iyer, S.; Bhosle, A. A.; Chatterjee, A. Grindstone chemistry: A "green" approach for the synthesis and derivatization of heterocycles. Tetrahedron 2022, 112, 132753. doi:10.1016/j.tet.2022.132753
  • Das, D.; Jena, A. K.; Pal, C. K.; Bourda, L.; Van Hecke, K. CuI Nanoparticle‐Catalyzed Regioselective Synthesis of 3‐Nitro‐2‐arylimidazo[1,2‐a]pyridines using Oxygen as Oxidant. Asian Journal of Organic Chemistry 2022, 11. doi:10.1002/ajoc.202100776
  • Panda, J.; Raiguru, B. P.; Mishra, M.; Mohapatra, S.; Nayak, S. Recent Advances in the Synthesis of Imidazo[1,2‐a]pyridines: A Brief Review. ChemistrySelect 2022, 7. doi:10.1002/slct.202103987
Other Beilstein-Institut Open Science Activities