New standards for collecting and fitting steady state kinetic data

Kenneth A. Johnson
Beilstein J. Org. Chem. 2019, 15, 16–29. https://doi.org/10.3762/bjoc.15.2

Cite the Following Article

New standards for collecting and fitting steady state kinetic data
Kenneth A. Johnson
Beilstein J. Org. Chem. 2019, 15, 16–29. https://doi.org/10.3762/bjoc.15.2

How to Cite

Johnson, K. A. Beilstein J. Org. Chem. 2019, 15, 16–29. doi:10.3762/bjoc.15.2

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 820.0 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Lau, E. S.; Majerova, M.; Hensley, N. M.; Mukherjee, A.; Vasina, M.; Pluskal, D.; Damborsky, J.; Prokop, Z.; Delroisse, J.; Bayaert, W.-S.; Parey, E.; Oliveri, P.; Marletaz, F.; Marek, M.; Oakley, T. H. Functional characterization of luciferase in a brittle star indicates parallel evolution influenced by genomic availability of haloalkane dehalogenase. Cold Spring Harbor Laboratory 2024. doi:10.1101/2024.10.14.618359
  • Slanska, M.; Stackova, L.; Marques, S. M.; Stacko, P.; Martínek, M.; Jílek, L.; Toul, M.; Damborsky, J.; Bednar, D.; Klán, P.; Prokop, Z. Azobenzene-Based Photoswitchable Substrates for Advanced Mechanistic Studies of Model Haloalkane Dehalogenase Enzyme Family. ACS catalysis 2024, 14, 11635–11645. doi:10.1021/acscatal.4c03503
  • Miller, J. R.; Schnorrenberg, E. C.; Aschenbrener, C.; Fox, B. G.; Brunold, T. C. Kinetic and Spectroscopic Investigation of the Y157F and C93G/Y157F Variants of Cysteine Dioxygenase: Dissecting the Roles of the Second-Sphere Residues C93 and Y157. Biochemistry 2024, 63, 1684–1696. doi:10.1021/acs.biochem.4c00177
  • Tang, G. Q.; Hu, H.; Douglas, J.; Carter, C. W. Primordial aminoacyl-tRNA synthetases preferred minihelices to full-length tRNA. Nucleic acids research 2024, 52, 7096–7111. doi:10.1093/nar/gkae417
  • Kenward, C.; Vuckovic, M.; Paetzel, M.; Strynadka, N. C. J. Kinetic comparison of all eleven viral polyprotein cleavage site processing events by SARS-CoV-2 main protease using a linked protein FRET platform. The Journal of biological chemistry 2024, 300, 107367. doi:10.1016/j.jbc.2024.107367
  • Long, A. R.; Mortara, E. L.; Mendoza, B. N.; Fink, E. C.; Sacco, F. X.; Ciesla, M. J.; Stack, T. M. M. Sequence similarity network analysis of drug- and dye-modifying azoreductase enzymes found in the human gut microbiome. Archives of biochemistry and biophysics 2024, 757, 110025. doi:10.1016/j.abb.2024.110025
  • Marshall, L. R.; Korendovych, I. V. Avoiding common pitfalls in designing kinetic protocols for catalytic amyloid studies. Methods in enzymology 2024, 697, 1–13. doi:10.1016/bs.mie.2024.03.029
  • Ringenbach, S.; Yoza, R.; Jones, P. A.; Du, M.; Klugh, K. L.; Peterson, L. W.; Colabroy, K. L. Discovery and characterization of l-DOPA 2,3-dioxygenase from Streptomyces hygroscopicus jingganensis. Archives of biochemistry and biophysics 2024, 755, 109967. doi:10.1016/j.abb.2024.109967
  • Marshall, L. R.; Makhlynets, O. V. Stopped-flow measurement of CO2 hydration activity by catalytic amyloids. Methods in enzymology 2024, 697, 35–49. doi:10.1016/bs.mie.2024.01.016
  • Nalefski, E. A.; Kooistra, R. M.; Parikh, I.; Hedley, S.; Rajaraman, K.; Madan, D. Determinants of CRISPR Cas12a nuclease activation by DNA and RNA targets. Nucleic acids research 2024, 52, 4502–4522. doi:10.1093/nar/gkae152
  • Carter, C. W. Base Pairing Promoted the Self-Organization of Genetic Coding, Catalysis, and Free-Energy Transduction. Life (Basel, Switzerland) 2024, 14, 199. doi:10.3390/life14020199
  • McCarty, K. D.; Liu, L.; Tateishi, Y.; Wapshott-Stehli, H. L.; Guengerich, F. P. The multistep oxidation of cholesterol to pregnenolone by human cytochrome P450 11A1 is highly processive. The Journal of biological chemistry 2023, 300, 105495. doi:10.1016/j.jbc.2023.105495
  • Simpson, M. C.; Harding, C. J.; Czekster, R. M.; Remmel, L.; Bode, B. E.; Czekster, C. M. Unveiling the Catalytic Mechanism of a Processive Metalloaminopeptidase. Biochemistry 2023, 62, 3188–3205. doi:10.1021/acs.biochem.3c00420
  • Chaillou, L. L.; Boeris, V.; Spelzini, D.; Nazareno, M. A. Enzymes in Biocatalysis: Characteristics, Kinetic Approach, Production, and Uses. Advanced Pharmacy; BENTHAM SCIENCE PUBLISHERS, 2023; pp 83–107. doi:10.2174/9789815049428123010007
  • Körner, A.; Bazzone, A.; Wichert, M.; Barthmes, M.; Dondapati, S. K.; Fertig, N.; Kubick, S. Unraveling the kinetics and pharmacology of human PepT1 using solid supported membrane-based electrophysiology. Bioelectrochemistry (Amsterdam, Netherlands) 2023, 155, 108573. doi:10.1016/j.bioelechem.2023.108573
  • Johnson, K. A. You get what you screen for: Standards for experimental design and data fitting in drug discovery. Methods in enzymology 2023, 690, 131–157. doi:10.1016/bs.mie.2023.08.003
  • Johnson, K. A. History of advances in enzyme kinetic methods: From minutes to milliseconds. The Enzymes 2023, 54, 107–134. doi:10.1016/bs.enz.2023.07.005
  • Bursch, K. L.; Olp, M. D.; Smith, B. C. Analysis of continuous enzyme kinetic data using ICEKAT. Methods in enzymology 2023, 690, 109–129. doi:10.1016/bs.mie.2023.06.019
  • Lee, D. F.; Atencio, N.; Bouchey, S.; Shoemaker, M. R.; Dodd, J. S.; Satre, M.; Miller, K. A.; McFarlane, J. S. Kinetic and structural characterization of carboxyspermidine dehydrogenase of polyamine biosynthesis. The Journal of biological chemistry 2023, 299, 105033. doi:10.1016/j.jbc.2023.105033
  • Glockzin, K.; Meneely, K. M.; Hughes, R.; Maatouk, S. W.; Piña, G. E.; Suthagar, K.; Clinch, K.; Buckler, J. N.; Lamb, A. L.; Tyler, P. C.; Meek, T. D.; Katzfuss, A. Kinetic and Structural Characterization of Trypanosoma cruzi Hypoxanthine-Guanine-Xanthine Phosphoribosyltransferases and Repurposing of Transition-State Analogue Inhibitors. Biochemistry 2023, 62, 2182–2201. doi:10.1021/acs.biochem.3c00116
Other Beilstein-Institut Open Science Activities