Supporting Information
| Supporting Information File 1: All details for the 3D-printed lab equipment and reactors (full part list, exploded-view CAD drawings, Arduino wiring) and all experimental data of the chemical reactions and NMR spectra. | ||
| Format: PDF | Size: 1.4 MB | Download |
| Supporting Information File 2: This zip-file includes all 3D-printed parts as stl-files for direct 3D printing, as well as stp-files for editing the 3D models, if necessary. It also contains the Arduino software code as an ino-file for controlling of the syringe pumps. | ||
| Format: ZIP | Size: 912.7 KB | Download |
Cite the Following Article
Low-budget 3D-printed equipment for continuous flow reactions
Jochen M. Neumaier, Amiera Madani, Thomas Klein and Thomas Ziegler
Beilstein J. Org. Chem. 2019, 15, 558–566.
https://doi.org/10.3762/bjoc.15.50
How to Cite
Neumaier, J. M.; Madani, A.; Klein, T.; Ziegler, T. Beilstein J. Org. Chem. 2019, 15, 558–566. doi:10.3762/bjoc.15.50
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 550.6 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Ncongwane, T. B.; Madala, N. E.; Ndinteh, D. T.; Smit, E. Unveiling Flavonoid Reactivity: A High-Resolution Mass Spectrometry Journey Through the Silylation of Quercetin. Rapid communications in mass spectrometry : RCM 2025, 39, e10101. doi:10.1002/rcm.10101
- Li, Y.; Long, H.; He, P.; Li, Y.; Zhou, R.; Zhou, X.; Liu, M.; Chen, S.; Jiang, Z.-X. Perfluoro-tert-butoxylated Monosaccharides for Metabolic 19F Magnetic Resonance Imaging in Hepatocellular Carcinoma Detection. JACS Au 2025, 5, 5069–5078. doi:10.1021/jacsau.5c00960
- Song, C. H.; Jeong, H.; Cha, Y. L.; Park, C. P. Flow Reactor for Sustainable Electrosynthesis Fabricated via Cost-Effective Electroplating and Adhesive Bonding. ChemSusChem 2025, 18, e202501123. doi:10.1002/cssc.202501123
- Doloi, S.; Das, M.; Li, Y.; Cho, Z. H.; Xiao, X.; Hanna, J. V.; Osvaldo, M.; Ng Wei Tat, L. Democratizing self-driving labs: advances in low-cost 3D printing for laboratory automation. Digital Discovery 2025, 4, 1685–1721. doi:10.1039/d4dd00411f
- Pascali, G.; Hall, A.; Zhara, D. 3D Printed Microreactors for Radiochemical Reactions. Automated Technologies for the Development and Production of Radiopharmaceuticals; Springer Nature Switzerland, 2025; pp 155–173. doi:10.1007/978-3-031-84632-8_8
- Catalysis in continuous flow: Foundations and advances toward a new era. Advances in Catalysis; Elsevier, 2025. doi:10.1016/bs.acat.2025.10.001
- du Preez, A.; Strydom, A. M.; Ndinteh, D. T.; Smit, E. Modular 3D printed flow system for efficient one-step synthesis of phenyl-functionalised silica-coated superparamagnetic iron oxide nanoparticles. Reaction Chemistry & Engineering 2024, 9, 2740–2749. doi:10.1039/d4re00242c
- Brewer, K.; Wignall, A.; Bazeed, A.; Gundsambuu, B.; Kohlhagen, J.; Yan, J.; Joyce, P.; Gillam, T. A.; Barry, S. C.; Blencowe, A. Customizable and Open-Source 3D Printed Inserts for Controlled Release and Cell Culture Experiments. ACS Applied Polymer Materials 2024, 6, 11813–11827. doi:10.1021/acsapm.4c01870
- Montaner, M. B.; Hilton, S. T. Recent advances in 3D printing for continuous flow chemistry. Current Opinion in Green and Sustainable Chemistry 2024, 47, 100923. doi:10.1016/j.cogsc.2024.100923
- Gnädinger, U.; Poier, D.; Trombini, C.; Dabros, M.; Marti, R. Development of Lab-Scale Continuous Stirred-Tank Reactor as Flow Process Tool for Oxidation Reactions Using Molecular Oxygen. Organic process research & development 2024, 28, 1860–1868. doi:10.1021/acs.oprd.3c00424
- Mc Veigh, M.; Bellan, L. M. Microfluidic synthesis of radiotracers: recent developments and commercialization prospects. Lab on a chip 2024, 24, 1226–1243. doi:10.1039/d3lc00779k
- Vázquez-Amaya, L. Y.; Coppola, G. A.; Van der Eycken, E. V.; Sharma, U. K. Lab-scale flow chemistry? Just do it yourself!. Journal of Flow Chemistry 2024, 14, 257–279. doi:10.1007/s41981-024-00312-5
- Montaner, M. B.; Penny, M. R.; Hilton, S. T. Digitisation of a modular plug and play 3D printed continuous flow system for chemical synthesis. Digital Discovery 2023, 2, 1797–1805. doi:10.1039/d3dd00128h
- Ncongwane, T. B.; Ndinteh, D. T.; Smit, E. Automated silylation of flavonoids using 3D printed microfluidics prior to chromatographic analysis: system development. Analytical and bioanalytical chemistry 2023, 415, 7151–7160. doi:10.1007/s00216-023-04981-4
- Lisboa, T. P.; de Faria, L. V.; de Oliveira, W. B. V.; Oliveira, R. S.; Matos, M. A. C.; Dornellas, R. M.; Matos, R. C. Cost-effective protocol to produce 3D-printed electrochemical devices using a 3D pen and lab-made filaments to ciprofloxacin sensing. Mikrochimica acta 2023, 190, 310. doi:10.1007/s00604-023-05892-y
- Korabelnikova, V. A.; Gordeev, E. G.; Ananikov, V. P. Systematic study of FFF materials for digitalizing chemical reactors with 3D printing: superior performance of carbon-filled polyamide. Reaction Chemistry & Engineering 2023, 8, 1613–1628. doi:10.1039/d2re00395c
- Buburuzan, A.-D.; Purcar, I. M.; Dorneanu, S. A. Low Cost High Precision Multiple Purposes Automatic Syringe. In 2023 10th International Conference on Modern Power Systems (MPS), IEEE, 2023; pp 1–5. doi:10.1109/mps58874.2023.10187589
- Menzel, F.; Cotton, J.; Klein, T.; Maurer, A.; Ziegler, T.; Neumaier, J. M. FOMSy: 3D-printed flexible open-source microfluidic system and flow synthesis of PET-tracer. Journal of Flow Chemistry 2023, 13, 247–256. doi:10.1007/s41981-023-00267-z
- Ibáñez-de-Garayo, A.; Imizcoz, M.; Maisterra, M.; Almazán, F.; Sanz, D.; Bimbela, F.; Cornejo, A.; Pellejero, I.; Gandía, L. M. The 3D-Printing Fabrication of Multichannel Silicone Microreactors for Catalytic Applications. Catalysts 2023, 13, 157. doi:10.3390/catal13010157
- Alimi, O. A.; Potgieter, K.; Khumalo, A. A.; Zwane, K.; Mashishi, L. S.; Gaborone, O. G.; Meijboom, R. The synthesis of Aspirin and Acetobromo-α-D-glucose using 3D printed flow reactors: an undergraduate demonstration. Journal of Flow Chemistry 2022, 12, 265–274. doi:10.1007/s41981-022-00236-y