Supporting Information
Supporting Information File 1: Additional figures and 1H and 13C NMR spectra of new compounds. | ||
Format: PDF | Size: 2.5 MB | Download |
Cite the Following Article
Cyclopropene derivatives of aminosugars for metabolic glycoengineering
Jessica Hassenrück and Valentin Wittmann
Beilstein J. Org. Chem. 2019, 15, 584–601.
https://doi.org/10.3762/bjoc.15.54
How to Cite
Hassenrück, J.; Wittmann, V. Beilstein J. Org. Chem. 2019, 15, 584–601. doi:10.3762/bjoc.15.54
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 355.5 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Li, J.; Chang, H.; Zhang, P.; Hou, L.; Li, W.; Zhang, Y.; Lao, Z. A novel tumor theranostic strategy based on metabolic glycoengineering and disulfidptosis. Organic & biomolecular chemistry 2024, 22, 6946–6949. doi:10.1039/d4ob01027b
- Zafar, A.; Sridhar, S.; Bineva-Todd, G.; Cioce, A.; Abdulla, N.; Chang, V.; Malaker, S. A.; Hewings, D. S.; Schumann, B. Expanding the repertoire of GalNAc analogues for cell-specific bioorthogonal tagging of glycoproteins. RSC chemical biology 2024, 5, 1002–1009. doi:10.1039/d4cb00093e
- Kufleitner, M.; Haiber, L. M.; Li, S.; Surendran, H.; Mayer, T. U.; Zumbusch, A.; Wittmann, V. Next-Generation Metabolic Glycosylation Reporters Enable Detection of Protein O-GlcNAcylation in Living Cells without S-Glyco Modification. Angewandte Chemie (International ed. in English) 2024, 63, e202320247. doi:10.1002/anie.202320247
- Kufleitner, M.; Haiber, L. M.; Li, S.; Surendran, H.; Mayer, T. U.; Zumbusch, A.; Wittmann, V. Next‐Generation Metabolic Glycosylation Reporters Enable Detection of Protein O−GlcNAcylation in Living Cells without S‐Glyco Modification. Angewandte Chemie 2024, 136. doi:10.1002/ange.202320247
- Chen, L.; Yang, Y.; Li, F.; Jin, F.; He, B.; Yang, J. Scalable synthesis of highly stable cyclopropene building blocks: application for bioorthogonal ligation with tetrazines. Organic Chemistry Frontiers 2023, 10, 4223–4229. doi:10.1039/d3qo00816a
- Dammen-Brower, K.; Tan, E.; Almaraz, R. T.; Du, J.; Yarema, K. J. Protocol Considerations for In Vitro Metabolic Glycoengineering of Non-Natural Glycans. Current protocols 2023, 3, e822. doi:10.1002/cpz1.822
- Kufleitner, M.; Haiber, L. M.; Wittmann, V. Metabolic glycoengineering - exploring glycosylation with bioorthogonal chemistry. Chemical Society reviews 2023, 52, 510–535. doi:10.1039/d2cs00764a
- Parle, D. R.; Bulat, F.; Fouad, S.; Zecchini, H.; Brindle, K. M.; Neves, A. A.; Leeper, F. J. Metabolic Glycan Labeling of Cancer Cells Using Variably Acetylated Monosaccharides. Bioconjugate chemistry 2022, 33, 1467–1473. doi:10.1021/acs.bioconjchem.2c00169
- Tasneem, A.; Parashar, S.; Aittan, S.; Jain, T.; Chauhan, C.; Rautela, J.; Bhat, Z. A.; Raza, K.; Madhumalar, A.; Sampathkumar, S.-G. PeracetylN-cyclobutanoyl-D-mannosamine enhances expression of sialyl-Lewis X (sLeX / CD15s) and adhesion of leukocytes. Cold Spring Harbor Laboratory 2021. doi:10.1101/2021.12.22.473788
- Nellinger, S.; Rapp, M. A.; Southan, A.; Wittmann, V.; Kluger, P. J. An Advanced ‘clickECM’ That Can be Modified by the Inverse-Electron-Demand Diels-Alder Reaction. Chembiochem : a European journal of chemical biology 2021, 23, e202100266. doi:10.1002/cbic.202100266
- Haiber, L. M.; Kufleitner, M.; Wittmann, V. Application of the Inverse-Electron-Demand Diels-Alder Reaction for Metabolic Glycoengineering. Frontiers in chemistry 2021, 9, 654932. doi:10.3389/fchem.2021.654932
- Agatemor, C.; Muthiah, K.; Ha, L.; Chai, J.; Osman, A.; Robertson, B. M.; Yarema, K. J. Imaging Glycans With Metabolic Glycoengineering. Comprehensive Glycoscience; Elsevier, 2021; pp 253–274. doi:10.1016/b978-0-12-409547-2.14962-5
- Dold, J. E. G. A.; Wittmann, V. Metabolic Glycoengineering with Azide- and Alkene-Modified Hexosamines: Quantification of Sialic Acid Levels. Chembiochem : a European journal of chemical biology 2020, 22, 1243–1251. doi:10.1002/cbic.202000715
- Nechaev, I. V.; Cherkaev, G. V.; Boev, N. V.; Solyev, P. N. Three-Component Reaction of 3,3-Difluorocyclopropenes, s-Tetrazines, and (benzo) Pyridines. The Journal of organic chemistry 2020, 86, 1037–1052. doi:10.1021/acs.joc.0c02292
- Zheng, J.; Zhan, Q.; Jiang, L.; Xing, D.; Zhang, T.; Wong, K.-L. A bioorthogonal time-resolved luminogenic probe for metabolic labelling and imaging of glycans. Inorganic Chemistry Frontiers 2020, 7, 4062–4069. doi:10.1039/d0qi00728e
- Li, P.-H.; Zhang, X.-Y.; Shi, M. Recent developments in cyclopropene chemistry. Chemical communications (Cambridge, England) 2020, 56, 5457–5471. doi:10.1039/d0cc01612h
- Agatemor, C.; Buettner, M. J.; Ariss, R.; Muthiah, K.; Saeui, C. T.; Yarema, K. J. Exploiting metabolic glycoengineering to advance healthcare. Nature reviews. Chemistry 2019, 3, 605–620. doi:10.1038/s41570-019-0126-y