Supporting Information
| Supporting Information File 1: Additional figures and 1H and 13C NMR spectra of new compounds. | ||
| Format: PDF | Size: 2.5 MB | Download |
Cite the Following Article
Cyclopropene derivatives of aminosugars for metabolic glycoengineering
Jessica Hassenrück and Valentin Wittmann
Beilstein J. Org. Chem. 2019, 15, 584–601.
https://doi.org/10.3762/bjoc.15.54
How to Cite
Hassenrück, J.; Wittmann, V. Beilstein J. Org. Chem. 2019, 15, 584–601. doi:10.3762/bjoc.15.54
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 355.5 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Tollabi, M.; Mehrabi, A.; Zolfaghari, S.; Khalili, M. R.; Shokrgozar, M. A.; Milan, P. B. Biomaterial-Based Cell Membrane Engineering Strategies and Their Scope in Biomedical Applications. Biomaterials, Bioengineering and Sustainability; Springer Nature Switzerland, 2025; pp 185–215. doi:10.1007/978-3-031-93425-4_7
- Li, J.; Chang, H.; Zhang, P.; Hou, L.; Li, W.; Zhang, Y.; Lao, Z. A novel tumor theranostic strategy based on metabolic glycoengineering and disulfidptosis. Organic & biomolecular chemistry 2024, 22, 6946–6949. doi:10.1039/d4ob01027b
- Zafar, A.; Sridhar, S.; Bineva-Todd, G.; Cioce, A.; Abdulla, N.; Chang, V.; Malaker, S. A.; Hewings, D. S.; Schumann, B. Expanding the repertoire of GalNAc analogues for cell-specific bioorthogonal tagging of glycoproteins. RSC chemical biology 2024, 5, 1002–1009. doi:10.1039/d4cb00093e
- Kufleitner, M.; Haiber, L. M.; Li, S.; Surendran, H.; Mayer, T. U.; Zumbusch, A.; Wittmann, V. Next-Generation Metabolic Glycosylation Reporters Enable Detection of Protein O-GlcNAcylation in Living Cells without S-Glyco Modification. Angewandte Chemie (International ed. in English) 2024, 63, e202320247. doi:10.1002/anie.202320247
- Kufleitner, M.; Haiber, L. M.; Li, S.; Surendran, H.; Mayer, T. U.; Zumbusch, A.; Wittmann, V. Next‐Generation Metabolic Glycosylation Reporters Enable Detection of Protein O−GlcNAcylation in Living Cells without S‐Glyco Modification. Angewandte Chemie 2024, 136. doi:10.1002/ange.202320247
- Chen, L.; Yang, Y.; Li, F.; Jin, F.; He, B.; Yang, J. Scalable synthesis of highly stable cyclopropene building blocks: application for bioorthogonal ligation with tetrazines. Organic Chemistry Frontiers 2023, 10, 4223–4229. doi:10.1039/d3qo00816a
- Dammen-Brower, K.; Tan, E.; Almaraz, R. T.; Du, J.; Yarema, K. J. Protocol Considerations for In Vitro Metabolic Glycoengineering of Non-Natural Glycans. Current protocols 2023, 3, e822. doi:10.1002/cpz1.822
- Kufleitner, M.; Haiber, L. M.; Wittmann, V. Metabolic glycoengineering - exploring glycosylation with bioorthogonal chemistry. Chemical Society reviews 2023, 52, 510–535. doi:10.1039/d2cs00764a
- Parle, D. R.; Bulat, F.; Fouad, S.; Zecchini, H.; Brindle, K. M.; Neves, A. A.; Leeper, F. J. Metabolic Glycan Labeling of Cancer Cells Using Variably Acetylated Monosaccharides. Bioconjugate chemistry 2022, 33, 1467–1473. doi:10.1021/acs.bioconjchem.2c00169
- Tasneem, A.; Parashar, S.; Aittan, S.; Jain, T.; Chauhan, C.; Rautela, J.; Bhat, Z. A.; Raza, K.; Madhumalar, A.; Sampathkumar, S.-G. PeracetylN-cyclobutanoyl-D-mannosamine enhances expression of sialyl-Lewis X (sLeX / CD15s) and adhesion of leukocytes. Cold Spring Harbor Laboratory 2021. doi:10.1101/2021.12.22.473788
- Nellinger, S.; Rapp, M. A.; Southan, A.; Wittmann, V.; Kluger, P. J. An Advanced ‘clickECM’ That Can be Modified by the Inverse-Electron-Demand Diels-Alder Reaction. Chembiochem : a European journal of chemical biology 2021, 23, e202100266. doi:10.1002/cbic.202100266
- Haiber, L. M.; Kufleitner, M.; Wittmann, V. Application of the Inverse-Electron-Demand Diels-Alder Reaction for Metabolic Glycoengineering. Frontiers in chemistry 2021, 9, 654932. doi:10.3389/fchem.2021.654932
- Agatemor, C.; Muthiah, K.; Ha, L.; Chai, J.; Osman, A.; Robertson, B. M.; Yarema, K. J. Imaging Glycans With Metabolic Glycoengineering. Comprehensive Glycoscience; Elsevier, 2021; pp 253–274. doi:10.1016/b978-0-12-409547-2.14962-5
- Dold, J. E. G. A.; Wittmann, V. Metabolic Glycoengineering with Azide- and Alkene-Modified Hexosamines: Quantification of Sialic Acid Levels. Chembiochem : a European journal of chemical biology 2020, 22, 1243–1251. doi:10.1002/cbic.202000715
- Nechaev, I. V.; Cherkaev, G. V.; Boev, N. V.; Solyev, P. N. Three-Component Reaction of 3,3-Difluorocyclopropenes, s-Tetrazines, and (benzo) Pyridines. The Journal of organic chemistry 2020, 86, 1037–1052. doi:10.1021/acs.joc.0c02292
- Zheng, J.; Zhan, Q.; Jiang, L.; Xing, D.; Zhang, T.; Wong, K.-L. A bioorthogonal time-resolved luminogenic probe for metabolic labelling and imaging of glycans. Inorganic Chemistry Frontiers 2020, 7, 4062–4069. doi:10.1039/d0qi00728e
- Li, P.-H.; Zhang, X.-Y.; Shi, M. Recent developments in cyclopropene chemistry. Chemical communications (Cambridge, England) 2020, 56, 5457–5471. doi:10.1039/d0cc01612h
- Agatemor, C.; Buettner, M. J.; Ariss, R.; Muthiah, K.; Saeui, C. T.; Yarema, K. J. Exploiting metabolic glycoengineering to advance healthcare. Nature reviews. Chemistry 2019, 3, 605–620. doi:10.1038/s41570-019-0126-y