Asymmetric synthesis of a high added value chiral amine using immobilized ω-transaminases

Antonella Petri, Valeria Colonna and Oreste Piccolo
Beilstein J. Org. Chem. 2019, 15, 60–66. https://doi.org/10.3762/bjoc.15.6

Cite the Following Article

Asymmetric synthesis of a high added value chiral amine using immobilized ω-transaminases
Antonella Petri, Valeria Colonna and Oreste Piccolo
Beilstein J. Org. Chem. 2019, 15, 60–66. https://doi.org/10.3762/bjoc.15.6

How to Cite

Petri, A.; Colonna, V.; Piccolo, O. Beilstein J. Org. Chem. 2019, 15, 60–66. doi:10.3762/bjoc.15.6

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 189.7 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Tang, Z.; Oku, Y.; Matsuda, T. Application of Immobilized Enzymes in Flow Biocatalysis for Efficient Synthesis. Organic Process Research & Development 2024, 28, 1308–1326. doi:10.1021/acs.oprd.3c00405
  • Tamborini, L.; Molinari, F.; Pinto, A. Development of asymmetric biotransformations: flow biocatalysis, photobiocatalysis, and microwave biocatalysis. Biocatalysis in Asymmetric Synthesis; Elsevier, 2024; pp 403–429. doi:10.1016/b978-0-443-19057-5.00001-7
  • Ralbovsky, N. M.; Smith, J. P. Recent Applications of Process Analytical Technology for Analysis of Industrial Asymmetric Syntheses. Comprehensive Chirality; Elsevier, 2024; pp 301–329. doi:10.1016/b978-0-32-390644-9.00087-1
  • Meersseman Arango, H.; van den Biggelaar, L.; Soumillion, P.; Luis, P.; Leyssens, T.; Paradisi, F.; Debecker, D. P. Continuous flow-mode synthesis of (chiral) amines with transaminase: a strategic biocatalytic approach to essential building blocks. Reaction Chemistry & Engineering 2023, 8, 1505–1544. doi:10.1039/d3re00210a
  • Zhu, F.; Zhang, J.; Ma, Y.; Yang, L.; Gao, Q.; Gao, S.; Cui, C. Semi-rational design of an imine reductase for asymmetric synthesis of alkylated S-4-azepanamines. Organic & biomolecular chemistry 2023, 21, 4181–4184. doi:10.1039/d3ob00442b
  • Li, F.; Du, Y.; Liang, Y.; Wei, Y.; Zheng, Y.; Yu, H. Redesigning an (R)-Selective Transaminase for the Efficient Synthesis of PharmaceuticalN-Heterocyclic Amines. ACS Catalysis 2022, 13, 422–432. doi:10.1021/acscatal.2c05177
  • Khatik, A. G.; Muley, A. B.; More, P. R.; Jain, A. K. Transaminase-mediated chiral selective synthesis of (1R)-(3-methylphenyl)ethan-1-amine from 1-(3-methylphenyl)ethan-1-one: process minutiae, optimization, characterization and 'What If studies'. Bioprocess and biosystems engineering 2022, 46, 207–225. doi:10.1007/s00449-022-02824-7
  • Wu, S.; Xiang, C.; Zhou, Y.; Khan, M. S. H.; Liu, W.; Feiler, C. G.; Wei, R.; Weber, G.; Höhne, M.; Bornscheuer, U. T. A growth selection system for the directed evolution of amine-forming or converting enzymes. Nature communications 2022, 13, 7458. doi:10.1038/s41467-022-35228-y
  • Schiffers, I.; Frings, M.; Kübber, B. M.; Truong, K.-N.; Rissanen, K.; Bolm, C. Preparation of Enantiopure 3-Aminopiperidine and 3-Aminoazepane Derivatives from Ornithine and Lysine. Consecutive Syntheses of Pharmacologically Active Analogs, Such as Besifloxacin. Organic Process Research & Development 2022, 26, 2811–2822. doi:10.1021/acs.oprd.2c00152
  • Ralbovsky, N. M.; Smith, J. P. Process analytical technology and its recent applications for asymmetric synthesis. Talanta 2022, 252, 123787. doi:10.1016/j.talanta.2022.123787
  • Khanam, W.; Dubey, N. Recent advances in immobilized ω-transaminase for chiral amine synthesis. Materials Today Chemistry 2022, 24, 100922. doi:10.1016/j.mtchem.2022.100922
  • Wang, X.; Xie, Y.; Wang, Z.; Zhang, K.; Wang, H.; Wei, D. Efficient Synthesis of (S)-1-Boc-3-aminopiperidine in a Continuous Flow System Using ω-Transaminase-Immobilized Amino-Ethylenediamine-Modified Epoxide Supports. Organic Process Research & Development 2022, 26, 1351–1359. doi:10.1021/acs.oprd.1c00217
  • Paixão, M. W.; Lima, R. N.; Kisukuri, C. M.; Matos, P. M. Comprehensive Heterocyclic Chemistry IV - Pyridines and Their Benzo Derivatives: Reactivity of Reduced Compounds. Comprehensive Heterocyclic Chemistry IV; Elsevier, 2022; pp 92–149. doi:10.1016/b978-0-12-818655-8.00012-3
  • Alcover, N.; Álvaro, G.; Guillén, M. Chiral Synthesis of 3-Amino-1-phenylbutane by a Multi-Enzymatic Cascade System. Catalysts 2021, 11, 973. doi:10.3390/catal11080973
  • Wang, C.; Tang, K.; Dai, Y.; Jia, H.; Li, Y.; Gao, Z.; Wu, B. Identification, Characterization, and Site-Specific Mutagenesis of a Thermostable ω-Transaminase from Chloroflexi bacterium . ACS omega 2021, 6, 17058–17070. doi:10.1021/acsomega.1c02164
  • Halling, P. J. Kinetics of enzyme-catalysed desymmetrisation of prochiral substrates: product enantiomeric excess is not always constant. Beilstein journal of organic chemistry 2021, 17, 873–884. doi:10.3762/bjoc.17.73
  • Kosjek, B. doi:10.1002/9781119487043.ch4
  • Odularu, A. T. Bismuth as Smart Material and Its Application in the Ninth Principle of Sustainable Chemistry. Journal of Chemistry 2020, 2020, 1–15. doi:10.1155/2020/9802934
  • Molnár, Z.; Farkas, E.; Lakó, Á.; Erdélyi, B.; Kroutil, W.; Vértessy, B. G.; Paizs, C.; Poppe, L. Immobilized Whole-Cell Transaminase Biocatalysts for Continuous-Flow Kinetic Resolution of Amines. Catalysts 2019, 9, 438. doi:10.3390/catal9050438
Other Beilstein-Institut Open Science Activities