Polarity effects in 4-fluoro- and 4-(trifluoromethyl)prolines

Vladimir Kubyshkin
Beilstein J. Org. Chem. 2020, 16, 1837–1852. https://doi.org/10.3762/bjoc.16.151

Supporting Information

Supporting Information File 1: Data on acid–base transition and amide bond isomerism and NMR characterization of compounds 17.
Format: PDF Size: 2.4 MB Download

Cite the Following Article

Polarity effects in 4-fluoro- and 4-(trifluoromethyl)prolines
Vladimir Kubyshkin
Beilstein J. Org. Chem. 2020, 16, 1837–1852. https://doi.org/10.3762/bjoc.16.151

How to Cite

Kubyshkin, V. Beilstein J. Org. Chem. 2020, 16, 1837–1852. doi:10.3762/bjoc.16.151

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 99.4 KB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kubyshkin, V.; Mykhailiuk, P. K. Proline Analogues in Drug Design: Current Trends and Future Prospects. Journal of Medicinal Chemistry 2024. doi:10.1021/acs.jmedchem.4c01987
  • Logvinenko, I. G.; Sadkova, I. V.; Tolmachova, N. A.; Shishkina, S. V.; Daniliuc, C. G.; Haufe, G.; Kondratov, I. S. 4-Trifluoromethoxy proline: synthesis of stereoisomers and lipophilicity study. Organic & biomolecular chemistry 2024, 22, 7982–7988. doi:10.1039/d4ob00688g
  • Kubyshkin, V.; Rubini, M. Proline Analogues. Chemical reviews 2024, 124, 8130–8232. doi:10.1021/acs.chemrev.4c00007
  • García-López, J.; Khomenko, D. M.; Zakharchenko, B. V.; Doroshchuk, R. O.; Starova, V. S.; Iglesias, M. J.; Lampeka, R. D.; López-Ortiz, F. Solvent- and functional-group-assisted tautomerism of 3-alkyl substituted 5-(2-pyridyl)-1,2,4-triazoles in DMSO-water. Organic & biomolecular chemistry 2023, 21, 9443–9458. doi:10.1039/d3ob01651j
  • Chernykh, A. V.; Aloshyn, D.; Kuchkovska, Y. O.; Daniliuc, C. G.; Tolmachova, N. A.; Kondratov, I. S.; Zozulya, S.; Grygorenko, O. O.; Haufe, G. Impact of β-perfluoroalkyl substitution of proline on the proteolytic stability of its peptide derivatives. Organic & biomolecular chemistry 2022, 20, 9337–9350. doi:10.1039/d2ob01430k
  • Kubyshkin, V. Application of (4R)-aminoproline in peptide engineering: conformational bias and pH-responsiveness revisited. New Journal of Chemistry 2022, 46, 9587–9594. doi:10.1039/d2nj00305h
  • Mykhailiuk, P. K. Fluorine-Containing Prolines: Synthetic Strategies, Applications, and Opportunities. The Journal of organic chemistry 2022, 87, 6961–7005. doi:10.1021/acs.joc.1c02956
  • Linclau, B.; Wang, Z.; Jeffries, B.; Graton, J.; Carbajo, R. J.; Sinnaeve, D.; Le Questel, J.-Y.; Scott, J. S.; Chiarparin, E. Relating Conformational Equilibria to Conformer-Specific Lipophilicities: New Opportunities in Drug Discovery. Angewandte Chemie (International ed. in English) 2021, 61, e202114862. doi:10.1002/anie.202114862
  • Linclau, B.; Wang, Z.; Jeffries, B.; Graton, J.; Carbajo, R. J.; Sinnaeve, D.; Le Questel, J.; Scott, J. S.; Chiarparin, E. Relating Conformational Equilibria to Conformer‐Specific Lipophilicities: New Opportunities in Drug Discovery. Angewandte Chemie 2021, 134. doi:10.1002/ange.202114862
  • Kubyshkin, V.; Bürck, J.; Babii, O.; Budisa, N.; Ulrich, A. S. Remarkably high solvatochromism in the circular dichroism spectra of the polyproline-II conformation: limitations or new opportunities?. Physical chemistry chemical physics : PCCP 2021, 23, 26931–26939. doi:10.1039/d1cp04551b
  • Kubyshkin, V. Experimental lipophilicity scale for coded and noncoded amino acid residues. Organic & biomolecular chemistry 2021, 19, 7031–7040. doi:10.1039/d1ob01213d
  • Motornov, V. A.; Tabolin, A. A.; Nelyubina, Y. V.; Nenajdenko, V. G.; Ioffe, S. L. Copper-catalyzed [3 + 2]-cycloaddition of α-halonitroalkenes with azomethine ylides: facile synthesis of multisubstituted pyrrolidines and pyrroles. Organic & biomolecular chemistry 2021, 19, 3413–3427. doi:10.1039/d1ob00146a
  • Mondal, R.; Agbaria, M.; Nairoukh, Z. Fluorinated Rings: Conformation and Application. Chemistry (Weinheim an der Bergstrasse, Germany) 2021, 27, 7193–7213. doi:10.1002/chem.202005425
  • Kubyshkin, V.; Davis, R. L.; Budisa, N. Biochemistry of fluoroprolines: the prospect of making fluorine a bioelement. Beilstein journal of organic chemistry 2021, 17, 439–460. doi:10.3762/bjoc.17.40
  • Troup, R. I.; Jeffries, B.; Saudain, R. E.-B.; Georgiou, E.; Fish, J.; Scott, J. S.; Chiarparin, E.; Fallan, C.; Linclau, B. Skipped Fluorination Motifs: Synthesis of Building Blocks and Comparison of Lipophilicity Trends with Vicinal and Isolated Fluorination Motifs. The Journal of organic chemistry 2021, 86, 1882–1900. doi:10.1021/acs.joc.0c02810
Other Beilstein-Institut Open Science Activities