Supporting Information
Supporting Information File 1: Material and methods, supplementary figures and tables, and MALDI–HRMS and MALDI–MS2 spectra. | ||
Format: PDF | Size: 4.7 MB | Download |
Cite the Following Article
Fabclavine diversity in Xenorhabdus bacteria
Sebastian L. Wenski, Harun Cimen, Natalie Berghaus, Sebastian W. Fuchs, Selcuk Hazir and Helge B. Bode
Beilstein J. Org. Chem. 2020, 16, 956–965.
https://doi.org/10.3762/bjoc.16.84
How to Cite
Wenski, S. L.; Cimen, H.; Berghaus, N.; Fuchs, S. W.; Hazir, S.; Bode, H. B. Beilstein J. Org. Chem. 2020, 16, 956–965. doi:10.3762/bjoc.16.84
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 131.6 KB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Paulo, B. S.; Recchia, M. J. J.; Lee, S.; Fergusson, C. H.; Romanowski, S. B.; Hernandez, A.; Krull, N.; Liu, D. Y.; Cavanagh, H.; Bos, A.; Gray, C. A.; Murphy, B. T.; Linington, R. G.; Eustaquio, A. S. Discovery of megapolipeptins by genome mining of a Burkholderiales bacteria collection. Chemical science 2024, 15, 16567–16581. doi:10.1039/d4sc03594a
- Ujszegi, J.; Boros, Z.; Harmos, K.; Magos, G.; Tóth, Á.; Vörös, J.; Kásler, A. Mitigation of chytrid infection on tadpoles with the antimicrobial metabolites ofXenorhabdus szentirmaii. Cold Spring Harbor Laboratory 2024. doi:10.1101/2024.08.27.609889
- Özdemir, M.; Yüksel, E. Toxicity of Spirotetramat and Cell-free Supernatants of Xenorhabdus and Photorhabdus Bacteria On the Citrus Mealybug, Planococcus Citri and Its Coccinellid Predator, Cryptolaemus Montrouzieri. Journal of Crop Health 2024, 76, 811–820. doi:10.1007/s10343-024-00990-0
- Ulug, D.; Touray, M.; Hazal Gulsen, S.; Cimen, H.; Hazir, C.; Bode, H. B.; Hazir, S. A taste of a toxin paradise: Xenorhabdus and Photorhabdus bacterial secondary metabolites against Aedes aegypti larvae and eggs. Journal of invertebrate pathology 2024, 205, 108126. doi:10.1016/j.jip.2024.108126
- Touray, M.; Ulug, D.; Gulsen, S. H.; Cimen, H.; Hazir, C.; Bode, H. B.; Hazir, S. Natural products from Xenorhabdus and Photorhabdus show promise as biolarvicides against Aedes albopictus. Pest management science 2024, 80, 4231–4242. doi:10.1002/ps.8127
- Long, Q.; Zhou, W.; Zhou, H.; Tang, Y.; Chen, W.; Liu, Q.; Bian, X. Polyamine-containing natural products: structure, bioactivity, and biosynthesis. Natural product reports 2024, 41, 525–564. doi:10.1039/d2np00087c
- Bozhüyük, K. A. J.; Präve, L.; Kegler, C.; Schenk, L.; Kaiser, S.; Schelhas, C.; Shi, Y.-N.; Kuttenlochner, W.; Schreiber, M.; Kandler, J.; Alanjary, M.; Mohiuddin, T. M.; Groll, M.; Hochberg, G. K. A.; Bode, H. B. Evolution-inspired engineering of nonribosomal peptide synthetases. Science (New York, N.Y.) 2024, 383, eadg4320. doi:10.1126/science.adg4320
- Touray, M.; Cimen, H.; Bode, E.; Bode, H. B.; Hazir, S. Effects of Xenorhabdus and Photorhabdus bacterial metabolites on the ovipositional activity of Aedes albopictus. Journal of Pest Science 2024, 97, 2203–2215. doi:10.1007/s10340-024-01760-7
- GÜLCÜ, B.; ALTIN, N. Alternaria brassicicola'ya karşı Trans-cinnamic Asit ve Xenorhabdus szentirmaii'nin Antifungal Metabolitlerinin Kullanım Potansiyellerinin Araştırılması. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 2024, 12, 365–374. doi:10.29130/dubited.1233579
- Duan, J.; Yuan, B.; Jia, F.; Li, X.; Chen, C.; Li, G. Development of an Efficient and Seamless Genetic Manipulation Method for Xenorhabdus and Its Application for Enhancing the Production of Fabclavines. Journal of agricultural and food chemistry 2023, 72, 274–283. doi:10.1021/acs.jafc.3c04136
- Touray, M.; Cimen, H.; Bode, E.; Bode, H. B.; Hazir, S. Effects of Xenorhabdus and Photorhabdus bacterial metabolites on the ovipositional activity of Aedes albopictus. Research Square Platform LLC 2023. doi:10.21203/rs.3.rs-3424908/v1
- Fodor, A.; Hess, C.; Ganas, P.; Boros, Z.; Kiss, J.; Makrai, L.; Dublecz, K.; Pál, L.; Fodor, L.; Sebestyén, A.; Klein, M. G.; Tarasco, E.; Kulkarni, M. M.; McGwire, B. S.; Vellai, T.; Hess, M. Antimicrobial Peptides (AMP) in the Cell-Free Culture Media of Xenorhabdus budapestensis and X. szentirmaii Exert Anti-Protist Activity against Eukaryotic Vertebrate Pathogens including Histomonas meleagridis and Leishmania donovani Species. Antibiotics (Basel, Switzerland) 2023, 12, 1462. doi:10.3390/antibiotics12091462
- Yuan, B.; Li, B.; Shen, H.; Duan, J.; Jia, F.; Maimaiti, Y.; Li, Y.; Li, G. Identification of fabclavine derivatives, Fcl-7 and Fcl-8, from Xenorhabdus budapestensis as major antifungal natural products against Rhizoctonia solani. Journal of applied microbiology 2023, 134. doi:10.1093/jambio/lxad190
- Ujszegi, J.; Boros, Z.; Fodor, A.; Vajna, B.; Hettyey, A. Metabolites of Xenorhabdus bacteria are potent candidates for mitigating amphibian chytridiomycosis. AMB Express 2023, 13, 88. doi:10.1186/s13568-023-01585-0
- Li, B.; Yuan, B.; Duan, J.; Qin, Y.; Shen, H.; Ren, J.; Francis, F.; Chen, M.; Li, G. Identification of Fcl-29 as an Effective Antifungal Natural Product against Fusarium graminearum and Combinatorial Engineering Strategy for Improving Its Yield. Journal of agricultural and food chemistry 2023, 71, 5554–5564. doi:10.1021/acs.jafc.2c09012
- Fodor, A.; Vellai, T.; Hess, C.; Makrai, L.; Dublecz, K.; Pál, L.; Molnár, A.; Klein, M. G.; Tarasco, E.; Józsa, S.; Ganas, P.; Hess, M. XENOFOOD-An Autoclaved Feed Supplement Containing Autoclavable Antimicrobial Peptides-Exerts Anticoccidial GI Activity, and Causes Bursa Enlargement, but Has No Detectable Harmful Effects in Broiler Cockerels despite In Vitro Detectable Cytotoxicity on LHM Cells. Pathogens (Basel, Switzerland) 2023, 12, 458. doi:10.3390/pathogens12030458
- Yüksel, E.; Ormanoğlu, N.; İmren, M.; Canhilal, R. Assessment of biocontrol potential of different Steinernema species and their bacterial symbionts, Xenorhabdus species against larvae of almond moth, Ephestia cautella (Walker). Journal of Stored Products Research 2023, 101, 102082. doi:10.1016/j.jspr.2023.102082
- Vicente-Díez, I.; Pou, A.; Campos-Herrera, R. Xenorhabdus- and Photorhabdus-based products. Development and Commercialization of Biopesticides; Elsevier, 2023; pp 81–101. doi:10.1016/b978-0-323-95290-3.00012-1
- Cimen, H. The role of Photorhabdus-induced bioluminescence and red cadaver coloration on the deterrence of insect scavengers from entomopathogenic nematode-infected cadavers. Journal of invertebrate pathology 2022, 196, 107871. doi:10.1016/j.jip.2022.107871
- Zhang, Y.; Wang, F.; Zhao, Z. Metabonomics reveals that entomopathogenic nematodes mediate tryptophan metabolites that kill host insects. Frontiers in microbiology 2022, 13, 1042145. doi:10.3389/fmicb.2022.1042145