Cerium-photocatalyzed aerobic oxidation of benzylic alcohols to aldehydes and ketones

  1. ‡,1 ,
  2. ‡,1 ,
  3. 2 ,
  4. 2 ORCID Logo and
  5. 1 ORCID Logo
1School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram (IISER-TVM) 695551, India
2Institut für Organische Chemie, Fakultät für Chemie und Pharmazie, Universität Regensburg, Universitätstraße 31, D-93053 Regensburg, Germany
  1. Corresponding author email
  2. ‡ Equal contributors
Associate Editor: D. Y.-K. Chen
Beilstein J. Org. Chem. 2021, 17, 1727–1732. https://doi.org/10.3762/bjoc.17.121
Received 22 May 2021, Accepted 16 Jul 2021, Published 23 Jul 2021

Abstract

We have developed a cerium-photocatalyzed aerobic oxidation of primary and secondary benzylic alcohols to aldehydes and ketones using inexpensive CeCl3·7H2O as photocatalyst and air oxygen as the terminal oxidant.

Introduction

The selective oxidation of alcohols to carbonyl compounds [1,2] is an important process for producing a wide range of value-added fine chemicals [3-6]. In the traditional oxidation process stoichiometric amounts of oxidants such as Br2, MnO2, hypervalent iodine reagents, chromium-based reagents, activated dimethyl sulfoxide, KMnO4, OsO4, or metal-based catalysts and peroxide were used [7-17]. Most of these protocols produce harmful waste and some of the oxidizing reagents are considered toxic [7-17]. In order to overcome the limitations, various homogeneous and heterogeneous catalytic oxidation systems have been reported. Aerobic oxidation is particularly attractive as it allows the transformations under mild reaction conditions with molecular oxygen acting as the terminal oxidant [13-33]. Most aerobic oxidation reactions utilize either metal complexes and nanoparticles or persistent radical reagents as catalysts [21].

In the past ten years, visible light-induced photocatalysis has emerged as an alternative to the classical conventional synthetic methods to construct carbon–carbon and carbon–heteroatom bonds [34-37]. As a mild, efficient, and environmentally friendly approach it has the potential to unlock unique reactions that are previously inaccessible under thermal conditions. Significant advances were made for the oxidation of benzylic alcohols by using metal-based photocatalysts [38-46] and metal-free photocatalysis [47-53] in combination with various oxidants, such as TBHP and DDQ [54,55]. However, the reported methods require either specific nanoparticle catalysts [39-42] or the catalytic method is limited to electron-rich or electron-neutral benzylic alcohols [56]. An operationally simple method avoiding waste and potentially toxic transition-metal catalysts that is able to convert any benzylic alcohol selectively to the aldehyde or ketone is still desirable. Recently, cerium photocatalysis was introduced as a robust alternative to generate oxygen or carbon-centered radicals under mild reaction conditions [57-64]. CeCl3 reacts via ligand-to-metal charge transfer generating oxygen-centered radicals, that lead to carbon-centered radicals through intra/intermolecular hydrogen atom transfer (HAT) processes, radical decarboxylative or radical deformylation [57-59]. In continuation of our research interest on visible-light-driven cerium photocatalysis [59,65], we herein report a mild aerobic photocatalytic oxidation of benzylic alcohols to aldehydes and ketones using 10 mol % CeCl3·7H2O (Scheme 1).

[1860-5397-17-121-i1]

Scheme 1: Photocatalyzed aerobic oxidation of aromatic alcohols.

Results and Discussion

A variety of reaction parameters was tested during the optimization of the reaction with 4-iodobenzyl alcohol (1a) as the model substrate and air as the oxidant (Table 1). The best results were found using 10 mol % CeCl3·7H2O as a photocatalyst and 10 mol % of NaHCO3 as a base in CH3CN under blue LED irradiation at 50 °C for 35 h giving compound 2a in 65% isolated yield (Table 1, entry 1). The product formation was reduced upon employing other cerium salts (Table 1, entries 2 and 3). Also, replacing NaHCO3 by other bases such as K2CO3 and Na2CO3 resulted in lower yields (30–40%) of product 2a (Table 1, entries 4 and 5). In the absence of a base the reaction afforded product 2a in 40% yield (Table 1, entry 6). The reaction worked with similar efficiency in CHCl3 and DMF (Table 1, entries 7 and 8), while other solvents such as toluene and EtOAc gave 2a in moderate yields (Table 1, entries 9 and 10). THF was found to be less effective in this oxidation reaction (Table 1, entry 11). Performing the reaction at 35 °C gave 2a in a moderate yield of 35% (Table 1, entry 12). Employing an external oxidant such as (NH4)2S2O8 instead of air diminished the yield (Table 1, entry 13). The substitution of air with a balloon of oxygen afforded 2a in 25% yield (Table 1, entry 14), while employing an argon atmosphere led to only trace amounts of the product (Table 1, entry 15). Additionally, control experiments indicated that catalytic amounts of the cerium salt, air atmosphere and light irradiation were necessary for the reaction to occur (Table 1, entries 16 and 17).

Table 1: Optimization of the reaction conditions.a

[Graphic 1]
entry deviation from standard conditions 2a (%)b
1 none 70 (65)c
2 CeCl3 instead of CeCl3·7H2O 60
3 (n-Bu4N)2CeIVCl6 instead of CeCl3·7H2O 42
4 K2CO3 instead of NaHCO3 40
5 Na2CO3 instead of NaHCO3 30
6 without base 40
7 CHCl3 instead of CH3CN 56
8 DMF instead of CH3CN 60
9 toluene instead of CH3CN 30
10 EtOAc instead of CH3CN 21
11 THF instead of CH3CN 5
12 at 35 °C instead of 50 °C 35
13 with 2.0 equiv of (NH4)2S2O8 instead of air 28
14 with O2 balloon instead of air 25
15 under argon instead of air trace
16 without CeCl3·7H2O 0
17 without light trace

aStandard conditions: 1a (0.2 mmol), CeCl3.7H2O (10 mol %), NaHCO3 (10 mol %), CH3CN (0.1 M) at 50 °C, 455 nm blue LED for 35 h. bNMR yields using trimethoxybenzene as internal standard. cIsolated yield.

With the optimized reaction parameters in our hands, we next explored the substrate scope of the reaction. As shown in Scheme 2, a broad range of primary and secondary benzylic alcohols was converted into the corresponding aldehydes and ketones. Various electron-withdrawing para-halo-substituted benzylic alcohols 1a–d were tested under the optimized reaction conditions and gave the corresponding halo-substituted benzaldehydes 2ad in good yields. The oxidation of simple benzyl alcohol (1e) under our reaction conditions gave benzaldehyde (2e) in 55% yield. A variety of electron-donating para-substituted benzyl alcohols (1f–h) gave lower isolated yields of the corresponding benzaldehydes 2f–h. Our methodology tolerates a variety of functional groups containing benzylic alcohols such as -OH (1h), -CN (1i), -NO2 (1j), methyl ester (1k), and benzyloxy (1v) to produce the corresponding aldehydes (2h–k and 2v) in moderate yields. Next, electronically different ortho-substituted benzylic alcohols were tested and 2-fluoro (1l) and 2-chloro (1m) benzyl alcohols gave the aldehydes 2l and 2m in good yields. The o-phenyl-substituted benzylic alcohol (1n) afforded biphenyl-2-carbaldehyde (2n) in only low yield (25%) probably due to steric reasons. The o-methyl (1o) and o-methoxy (1p) benzylic alcohols yielded the corresponding benzaldehydes 2o and 2p in moderate yields and to our surprise we did not observe any oxidation of the methyl or methoxy groups via hydrogen atom transfer processes [57]. Interestingly, we found that a variety of ortho-phenoxy-substituted benzylic alcohols (1q, 1s) were oxidized under our reaction conditions giving the corresponding aldehydes (2q, 2s) in good yields. Also, the meta-substituted benzylic alcohols 1t–v reacted to the corresponding benzaldehydes in good yields in our reaction conditions. Ortho/para-disubstituted benzylic alcohol 1w gave 2,4-dichlorobenzaldehyde (2w) in 70% yield. The sulfur-containing compounds 4-(phenylthio)benzyl alcohol (1r) and the heterocyclic compound thiophene-2-ylmethanol (1x) gave the corresponding aldehydes 2r and 2x in 61 and 80% yield, respectively. Finally, 2-naphthylmethanol (1y) was subjected to the reaction conditions and gave 2-naphthaldehyde (2y) in good yield (61%).

[1860-5397-17-121-i2]

Scheme 2: Substrate scope. Reaction conditions as given in Table 1 (entry 1). Yields are isolated yields, average of at least two independent runs. Notes: athe reaction was carried using 4.3 mmol of 1a and reaction time was 72 h; b42 h reaction time; c48 h reaction time.

Next, the scope of secondary benzylic alcohols was tested in our reaction conditions. Substituted 1-phenylethanols such as 1z, 1aa, tetralol (1ab), diphenyl methanol (1ac) and derivatives thereof with substituents of different electronic nature such as 1ad and 1ae gave the ketones 2z, 2aa, 2ab, 2ac, 2ad, and 2ae in good yields. However, the primary aliphatic alcohol 3-phenylpropanol (1af) did not provide the desired aldehyde at all, and allylic alcohols such as geraniol (1ag) and cinnamyl alcohol (1ah) afforded the aldehydes 2ag and 2ah in very low yields (5 and 7%, respectively). In addition, when the mixture of 3-phenylproponol (1ah) and 3-bromobenzylic alcohol (1t) was subjected to the standard reaction conditions, we observed the selective oxidation of the benzylic alcohol giving the expected product in 44% yield (Scheme 3).

[1860-5397-17-121-i3]

Scheme 3: Selective oxidation of 3-bromobenzyl alcohol in the presence of 3-phenylpropanol. Compound 1af was recovered unchanged from the reaction mixture.

The efficiency of this cerium-photocatalyzed aerobic oxidation of alcohols prompted us to conduct some preliminary mechanistic studies (Figure 1). As anticipated, the ON/OFF irradiation experiments confirmed that our reaction required a continuous blue light irradiation (see Supporting Information File 1). The inhibition of the catalytic cycle upon the addition of TEMPO revealed that the reaction proceeds through radical intermediates. Next, we carried out UV–vis monitoring experiments in order to verify whether the interaction with the substituted benzyl alcohols and CeIV could lead to a ligand-to-metal charge transfer (LMCT) process, which reduces the CeIV species to CeIII, similarly as reported by Zuo and co-workers [57]. We chose (n-Bu4N)2CeIVCl6 as the CeIV source to ensure a sufficient solubility in organic solvents and to facilitate the detection of the species. The CeIV(OBn)Cln complex was prepared by mixing the (n-Bu4N)2CeIVCl6 complex with BnOH under basic conditions. The UV–vis spectra of the CeIV(OBn)Cln complex displayed a band resembling the LMCT band of known cerium–alkoxide complexes, showing considerable overlap with the blue LED region, thus suggesting that the CeIV(OBn)Cln species could be photoexcited (Figure 1A). We then analyzed UV–vis spectra of the CeIV(OBn)Cln complex recorded after irradiation with blue light at different time intervals. As shown in Figure 1A, the absorption spectrum of the CeIV(OBn)Cln complex gradually shifted from λmax = 375 nm to λmax = 325 nm upon irradiation, which indicates a photoinduced CeIV–OBn homolytic cleavage to generate a CeIII complex and a benzyloxy radical. Although the exact catalytic cycle of our reaction remains to be elucidated, we propose a plausible reaction mechanism based on our observations and known literature precedents (Figure 1B) [57,59,66-69]. Under aerobic conditions the catalytic CeIII(OBn)Ln species I (in situ derived by the reaction of CeCl3 (CeIIILn) with the substrate benzyl alcohol, BnOH) could be oxidized to LnCeIV–OBn complex II [67-69]. During this process O2 is converted into a superoxide radical anion O2•−. Photolysis of the CeIV–OBn complex (II), leads to the formation of the corresponding benzyloxy radical (III) and regenerates the CeIII species. A further abstraction of a benzylic hydrogen atom by the peroxide radical then generates the final product 2 [48]. However, at this moment we cannot exclude the involvement of possible intermolecular HAT or 1,2-HAT from the intermediate III to generate the product 2.

[1860-5397-17-121-1]

Figure 1: Mechanistic studies. (A): UV–vis spectra of the CeIV(OBn)Cln complex in CH3CN under blue light irradiation (0–180 s); (B): plausible reaction mechanism.

Conclusion

In summary, we have developed a catalytic aerobic oxidation of benzylic alcohols to the corresponding aldehydes without further oxidation and formation of benzoic acids. A variety of primary and secondary benzylic alcohols were converted into the corresponding aldehydes and ketones in good to moderate yields using commercially available and inexpensive CeCl3·7H2O as a photocatalyst and air as an oxidant.

Supporting Information

Supporting Information File 1: Full experimental details, compound characterization, and copies of NMR spectra.
Format: PDF Size: 4.2 MB Download

Funding

V.R.Y. acknowledges IISER-TVM for the financial support. GSY acknowledges the IISER TVM for the doctoral fellowship. JS thanks the Studienstiftung des Deutschen Volkes for a Ph.D stipend.

References

  1. Tojo, G. Oxidation of Alcohols to Aldehydes and Ketones: A Guide to Current Common Practice; Springer Science & Business Media: New York, NY, USA, 2006.
    Return to citation in text: [1]
  2. Wang, D.; Weinstein, A. B.; White, P. B.; Stahl, S. S. Chem. Rev. 2018, 118, 2636–2679. doi:10.1021/acs.chemrev.7b00334
    Return to citation in text: [1]
  3. Bäckvall, J.-E. Modern Oxidation Methods; Wiley-VCH: Weinheim, Germany, 2004.
    Return to citation in text: [1]
  4. Dunn, P. J.; Wells, A. S.; Williams, M. T. Future trends for green chemistry in the pharmaceutical industry. In Green Chemistry in the Pharmaceutical Industry; Dunn, P. J.; Wells, A. S.; Williams, M. T., Eds.; Wiley-VCH: Weinheim, Germany, 2010; pp 333–355. doi:10.1002/9783527629688.ch16
    Return to citation in text: [1]
  5. Das, A.; Stahl, S. S. Angew. Chem., Int. Ed. 2017, 56, 8892–8897. doi:10.1002/anie.201704921
    Return to citation in text: [1]
  6. Kawahara, R.; Fujita, K.-I.; Yamaguchi, R. Angew. Chem., Int. Ed. 2012, 51, 12790–12794. doi:10.1002/anie.201206987
    Return to citation in text: [1]
  7. Friedrich, H. B. Platinum Met. Rev. 1999, 43, 94–102.
    Return to citation in text: [1] [2]
  8. Omura, K.; Swern, D. Tetrahedron 1978, 34, 1651–1660. doi:10.1016/0040-4020(78)80197-5
    Return to citation in text: [1] [2]
  9. Gorini, L.; Caneschi, A.; Menichetti, S. Synlett 2006, 948–950. doi:10.1055/s-2006-939045
    Return to citation in text: [1] [2]
  10. Pfitzner, K. E.; Moffatt, J. G. J. Am. Chem. Soc. 1963, 85, 3027–3028. doi:10.1021/ja00902a036
    Return to citation in text: [1] [2]
  11. Parikh, J. R.; Doering, W. v. E. J. Am. Chem. Soc. 1967, 89, 5505–5507. doi:10.1021/ja00997a067
    Return to citation in text: [1] [2]
  12. Albright, J. D.; Goldman, L. J. Am. Chem. Soc. 1965, 87, 4214–4216. doi:10.1021/ja01096a055
    Return to citation in text: [1] [2]
  13. Liu, R.; Liang, X.; Dong, C.; Hu, X. J. Am. Chem. Soc. 2004, 126, 4112–4113. doi:10.1021/ja031765k
    Return to citation in text: [1] [2] [3]
  14. ten Brink, G. J.; Arends, I. W. C. E.; Sheldon, R. A. Science 2000, 287, 1636–1639. doi:10.1126/science.287.5458.1636
    Return to citation in text: [1] [2] [3]
  15. Mori, K.; Hara, T.; Mizugaki, T.; Ebitani, K.; Kaneda, K. J. Am. Chem. Soc. 2004, 126, 10657–10666. doi:10.1021/ja0488683
    Return to citation in text: [1] [2] [3]
  16. Markó, I. E.; Giles, P. R.; Tsukazaki, M.; Brown, S. M.; Urch, C. J. Science 1996, 274, 2044–2046. doi:10.1126/science.274.5295.2044
    Return to citation in text: [1] [2] [3]
  17. Li, B.; Gu, T.; Ming, T.; Wang, J.; Wang, P.; Wang, J.; Yu, J. C. ACS Nano 2014, 8, 8152–8162. doi:10.1021/nn502303h
    Return to citation in text: [1] [2] [3]
  18. Parmeggiani, C.; Cardona, F. Green Chem. 2012, 14, 547–564. doi:10.1039/c2gc16344f
    Return to citation in text: [1]
  19. Shi, Z.; Zhang, C.; Tang, C.; Jiao, N. Chem. Soc. Rev. 2012, 41, 3381–3430. doi:10.1039/c2cs15224j
    Return to citation in text: [1]
  20. Davis, S. E.; Ide, M. S.; Davis, R. J. Green Chem. 2013, 15, 17–45. doi:10.1039/c2gc36441g
    Return to citation in text: [1]
  21. Wertz, S.; Studer, A. Green Chem. 2013, 15, 3116–3134. doi:10.1039/c3gc41459k
    Return to citation in text: [1] [2]
  22. Guo, Z.; Liu, B.; Zhang, Q.; Deng, W.; Wang, Y.; Yang, Y. Chem. Soc. Rev. 2014, 43, 3480–3524. doi:10.1039/c3cs60282f
    Return to citation in text: [1]
  23. Gemoets, H. P. L.; Su, Y.; Shang, M.; Hessel, V.; Luque, R.; Noël, T. Chem. Soc. Rev. 2016, 45, 83–117. doi:10.1039/c5cs00447k
    Return to citation in text: [1]
  24. Mu, R.; Liu, Z.; Yang, Z.; Liu, Z.; Wu, L.; Liu, Z.-L. Adv. Synth. Catal. 2005, 347, 1333–1336. doi:10.1002/adsc.200505102
    Return to citation in text: [1]
  25. Karimi, B.; Biglari, A.; Clark, J. H.; Budarin, V. Angew. Chem., Int. Ed. 2007, 46, 7210–7213. doi:10.1002/anie.200701918
    Return to citation in text: [1]
  26. Jiang, N.; Ragauskas, A. J. ChemSusChem 2008, 1, 823–825. doi:10.1002/cssc.200800144
    Return to citation in text: [1]
  27. Shibuya, M.; Osada, Y.; Sasano, Y.; Tomizawa, M.; Iwabuchi, Y. J. Am. Chem. Soc. 2011, 133, 6497–6500. doi:10.1021/ja110940c
    Return to citation in text: [1]
  28. Gowrisankar, S.; Neumann, H.; Gördes, D.; Thurow, K.; Jiao, H.; Beller, M. Chem. – Eur. J. 2013, 19, 15979–15984. doi:10.1002/chem.201302526
    Return to citation in text: [1]
  29. Karimi, B.; Farhangi, E.; Vali, H.; Vahdati, S. ChemSusChem 2014, 7, 2735–2741. doi:10.1002/cssc.201402059
    Return to citation in text: [1]
  30. Kim, S. M.; Shin, H. Y.; Kim, D. W.; Yang, J. W. ChemSusChem 2016, 9, 241–245. doi:10.1002/cssc.201501359
    Return to citation in text: [1]
  31. McCann, S. D.; Stahl, S. S. J. Am. Chem. Soc. 2016, 138, 199–206. doi:10.1021/jacs.5b09940
    Return to citation in text: [1]
  32. Xie, J.; Yin, K.; Serov, A.; Artyushkova, K.; Pham, H. N.; Sang, X.; Unocic, R. R.; Atanassov, P.; Datye, A. K.; Davis, R. J. ChemSusChem 2017, 10, 359–362. doi:10.1002/cssc.201601364
    Return to citation in text: [1]
  33. Wei, Z.; Ru, S.; Zhao, Q.; Yu, H.; Zhang, G.; Wei, Y. Green Chem. 2019, 21, 4069–4075. doi:10.1039/c9gc01248f
    Return to citation in text: [1]
  34. Marzo, L.; Pagire, S. K.; Reiser, O.; König, B. Angew. Chem., Int. Ed. 2018, 57, 10034–10072. doi:10.1002/anie.201709766
    Return to citation in text: [1]
  35. Kärkäs, M. D.; Porco, J. A., Jr.; Stephenson, C. R. J. Chem. Rev. 2016, 116, 9683–9747. doi:10.1021/acs.chemrev.5b00760
    Return to citation in text: [1]
  36. Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075–10166. doi:10.1021/acs.chemrev.6b00057
    Return to citation in text: [1]
  37. Shaw, M. H.; Twilton, J.; MacMillan, D. W. C. J. Org. Chem. 2016, 81, 6898–6926. doi:10.1021/acs.joc.6b01449
    Return to citation in text: [1]
  38. Wang, Q.; Zhang, M.; Chen, C.; Ma, W.; Zhao, J. Angew. Chem., Int. Ed. 2010, 49, 7976–7979. doi:10.1002/anie.201001533
    Return to citation in text: [1]
  39. Sugano, Y.; Shiraishi, Y.; Tsukamoto, D.; Ichikawa, S.; Tanaka, S.; Hirai, T. Angew. Chem., Int. Ed. 2013, 52, 5295–5299. doi:10.1002/anie.201301669
    Return to citation in text: [1] [2]
  40. Tanaka, A.; Hashimoto, K.; Kominami, H. J. Am. Chem. Soc. 2012, 134, 14526–14533. doi:10.1021/ja305225s
    Return to citation in text: [1] [2]
  41. Yurdakal, S.; Palmisano, G.; Loddo, V.; Augugliaro, V.; Palmisano, L. J. Am. Chem. Soc. 2008, 130, 1568–1569. doi:10.1021/ja709989e
    Return to citation in text: [1] [2]
  42. Chen, Y.-Z.; Wang, Z. U.; Wang, H.; Lu, J.; Yu, S.-H.; Jiang, H.-L. J. Am. Chem. Soc. 2017, 139, 2035–2044. doi:10.1021/jacs.6b12074
    Return to citation in text: [1] [2]
  43. Meng, C.; Yang, K.; Fu, X.; Yuan, R. ACS Catal. 2015, 5, 3760–3766. doi:10.1021/acscatal.5b00644
    Return to citation in text: [1]
  44. Furukawa, S.; Shishido, T.; Teramura, K.; Tanaka, T. ACS Catal. 2012, 2, 175–179. doi:10.1021/cs2005554
    Return to citation in text: [1]
  45. Zhao, L.-M.; Meng, Q.-Y.; Fan, X.-B.; Ye, C.; Li, X.-B.; Chen, B.; Ramamurthy, V.; Tung, C.-H.; Wu, L.-Z. Angew. Chem., Int. Ed. 2017, 56, 3020–3024. doi:10.1002/anie.201700243
    Return to citation in text: [1]
  46. Guo, R.-Y.; Sun, L.; Pan, X.-Y.; Yang, X.-D.; Ma, S.; Zhang, J. Chem. Commun. 2018, 54, 12614–12617. doi:10.1039/c8cc07137c
    Return to citation in text: [1]
  47. Nikitas, N. F.; Tzaras, D. I.; Triandafillidi, I.; Kokotos, C. G. Green Chem. 2020, 22, 471–477. doi:10.1039/c9gc03000j
    Return to citation in text: [1]
  48. Schilling, W.; Riemer, D.; Zhang, Y.; Hatami, N.; Das, S. ACS Catal. 2018, 8, 5425–5430. doi:10.1021/acscatal.8b01067
    Return to citation in text: [1] [2]
  49. Dongare, P.; MacKenzie, I.; Wang, D.; Nicewicz, D. A.; Meyer, T. J. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 9279–9283. doi:10.1073/pnas.1707318114
    Return to citation in text: [1]
  50. Zelenka, J.; Svobodová, E.; Tarábek, J.; Hoskovcová, I.; Boguschová, V.; Bailly, S.; Sikorski, M.; Roithová, J.; Cibulka, R. Org. Lett. 2019, 21, 114–119. doi:10.1021/acs.orglett.8b03547
    Return to citation in text: [1]
  51. Zhang, Y.; Schilling, W.; Riemer, D.; Das, S. Nat. Protoc. 2020, 15, 822–839. doi:10.1038/s41596-019-0268-x
    Return to citation in text: [1]
  52. Sheriff Shah, S.; Pradeep Singh, N. D. Tetrahedron Lett. 2018, 59, 247–251. doi:10.1016/j.tetlet.2017.12.018
    Return to citation in text: [1]
  53. Su, F.; Mathew, S. C.; Lipner, G.; Fu, X.; Antonietti, M.; Blechert, S.; Wang, X. J. Am. Chem. Soc. 2010, 132, 16299–16301. doi:10.1021/ja102866p
    Return to citation in text: [1]
  54. Walsh, K.; Sneddon, H. F.; Moody, C. J. Org. Lett. 2014, 16, 5224–5227. doi:10.1021/ol502664f
    Return to citation in text: [1]
  55. Devari, S.; Rizvi, M. A.; Shah, B. A. Tetrahedron Lett. 2016, 57, 3294–3297. doi:10.1016/j.tetlet.2016.06.046
    Return to citation in text: [1]
  56. Fukuzumi, S.; Kuroda, S. Res. Chem. Intermed. 1999, 25, 789–811. doi:10.1163/156856799x00680
    Return to citation in text: [1]
  57. Hu, A.; Guo, J.-J.; Pan, H.; Tang, H.; Gao, Z.; Zuo, Z. J. Am. Chem. Soc. 2018, 140, 1612–1616. doi:10.1021/jacs.7b13131
    Return to citation in text: [1] [2] [3] [4] [5]
  58. Hu, A.; Guo, J.-J.; Pan, H.; Zuo, Z. Science 2018, 361, 668–672. doi:10.1126/science.aat9750
    Return to citation in text: [1] [2]
  59. Yatham, V. R.; Bellotti, P.; König, B. Chem. Commun. 2019, 55, 3489–3492. doi:10.1039/c9cc00492k
    Return to citation in text: [1] [2] [3] [4]
  60. Schwarz, J.; König, B. Chem. Commun. 2019, 55, 486–488. doi:10.1039/c8cc09208g
    Return to citation in text: [1]
  61. Chen, Y.; Wang, X.; He, X.; An, Q.; Zuo, Z. J. Am. Chem. Soc. 2021, 143, 4896–4902. doi:10.1021/jacs.1c00618
    Return to citation in text: [1]
  62. Du, J.; Yang, X.; Wang, X.; An, Q.; He, X.; Pan, H.; Zuo, Z. Angew. Chem., Int. Ed. 2021, 60, 5370–5376. doi:10.1002/anie.202012720
    Return to citation in text: [1]
  63. An, Q.; Wang, Z.; Chen, Y.; Wang, X.; Zhang, K.; Pan, H.; Liu, W.; Zuo, Z. J. Am. Chem. Soc. 2020, 142, 6216–6226. doi:10.1021/jacs.0c00212
    Return to citation in text: [1]
  64. Zhang, K.; Chang, L.; An, Q.; Wang, X.; Zuo, Z. J. Am. Chem. Soc. 2019, 141, 10556–10564. doi:10.1021/jacs.9b05932
    Return to citation in text: [1]
  65. Wadekar, K.; Aswale, S.; Yatham, V. R. Org. Biomol. Chem. 2020, 18, 983–987. doi:10.1039/c9ob02676b
    Return to citation in text: [1]
  66. Shirase, S.; Tamaki, S.; Shinohara, K.; Hirosawa, K.; Tsurugi, H.; Satoh, T.; Mashima, K. J. Am. Chem. Soc. 2020, 142, 5668–5675. doi:10.1021/jacs.9b12918
    Return to citation in text: [1]
  67. Geibel, I.; Dierks, A.; Müller, T.; Christoffers, J. Chem. – Eur. J. 2017, 23, 7245–7254. doi:10.1002/chem.201605468
    Return to citation in text: [1] [2]
  68. Speldrich, J.-M.; Christoffers, J. Eur. J. Org. Chem. 2021, 907–914. doi:10.1002/ejoc.202001532
    Return to citation in text: [1] [2]
  69. Rössle, M.; Werner, T.; Baro, A.; Frey, W.; Christoffers, J. Angew. Chem., Int. Ed. 2004, 43, 6547–6549. doi:10.1002/anie.200461406
    Return to citation in text: [1] [2]
Other Beilstein-Institut Open Science Activities