Chemical syntheses and salient features of azulene-containing homo- and copolymers

Vijayendra S. Shetti
Beilstein J. Org. Chem. 2021, 17, 2164–2185. https://doi.org/10.3762/bjoc.17.139

Cite the Following Article

Chemical syntheses and salient features of azulene-containing homo- and copolymers
Vijayendra S. Shetti
Beilstein J. Org. Chem. 2021, 17, 2164–2185. https://doi.org/10.3762/bjoc.17.139

How to Cite

Shetti, V. S. Beilstein J. Org. Chem. 2021, 17, 2164–2185. doi:10.3762/bjoc.17.139

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 11.5 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Starzak, K.; Tomal, W.; Chachaj-Brekiesz, A.; Galek, M.; Ortyl, J. Revealing the photoredox potential of azulene derivatives as panchromatic photoinitiators in various light-initiated polymerization processes. Polymer Chemistry 2024, 15, 2931–2948. doi:10.1039/d4py00275j
  • Xiang, J.; Yang, Z.; Zhao, J.; Duan, C.; Wang, J.; Gao, X. Poly(vinyl azulene)s: An Emerging Class of Poly(vinyl arene)s. Macromolecules 2024, 57, 7516–7523. doi:10.1021/acs.macromol.4c00676
  • Slon, E.; Slon, B.; Kowalczuk, D. Azulene and Its Derivatives as Potential Compounds in the Therapy of Dermatological and Anticancer Diseases: New Perspectives against the Backdrop of Current Research. Molecules (Basel, Switzerland) 2024, 29, 2020. doi:10.3390/molecules29092020
  • Iwashina, T.; Nakagawa, H.; Sato, Y.; Hayami, R.; Yamamoto, K.; Gunji, T. Formation and characterization of palladium ethyl 2-aminoazulene-carboxylate complexes. Polyhedron 2024, 247, 116740. doi:10.1016/j.poly.2023.116740
  • Wang, S. R. Direct Access to Functionalized Azulenes and Pseudoazulenes via Unconventional Alkyne Cyclization Reactions. Chemistry, an Asian journal 2023, 18, e202300244. doi:10.1002/asia.202300244
  • Onuki, Y.; Yamazaki, K.; Masuda, Y.; Yakura, T.; Nambu, H. Ring‐Opening Cyclization of Spirocyclopropanes with Stabilized Phosphorus Ylides: Access to Indane and Azulene Skeletons. Advanced Synthesis & Catalysis 2023, 365, 2536–2544. doi:10.1002/adsc.202300021
  • Razus, A. C. Azulene, Reactivity, and Scientific Interest Inversely Proportional to Ring Size; Part 1: The Five-Membered Ring. Symmetry 2023, 15, 310. doi:10.3390/sym15020310
  • Razus, A. C. Dancing with Azulene. Symmetry 2022, 14, 297. doi:10.3390/sym14020297
  • Hou, B.; Li, J.; Zhou, Z.; Tan, W. L.; Yang, X.; Zhang, J.; McNeill, C. R.; Ge, C.; Wang, J.; Gao, X. Incorporation of Electron-Rich Indacenodithiophene Units into the Backbone of 2,6-Azulene-Based Conjugated Polymers for Proton-Responsive Materials and p-Type Polymeric Semiconductors. ACS Materials Letters 2022, 4, 392–400. doi:10.1021/acsmaterialslett.1c00767
  • Elwahy, A. H. M.; Abdelhamid, I. A.; Shaaban, M. R. Recent Advances in the Functionalization of Azulene Through Pd‐Catalyzed Cross‐Coupling Reactions. ChemistrySelect 2021, 6, 13664–13723. doi:10.1002/slct.202103357
Other Beilstein-Institut Open Science Activities