Cite the Following Article
Cryogels: recent applications in 3D-bioprinting, injectable cryogels, drug delivery, and wound healing
Luke O. Jones, Leah Williams, Tasmin Boam, Martin Kalmet, Chidubem Oguike and Fiona L. Hatton
Beilstein J. Org. Chem. 2021, 17, 2553–2569.
https://doi.org/10.3762/bjoc.17.171
How to Cite
Jones, L. O.; Williams, L.; Boam, T.; Kalmet, M.; Oguike, C.; Hatton, F. L. Beilstein J. Org. Chem. 2021, 17, 2553–2569. doi:10.3762/bjoc.17.171
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
Picture with graphical abstract, title and authors for social media postings and presentations. | ||
Format: PNG | Size: 9.2 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Castanheira, E. J.; Rodrigues, J. M. M.; Mano, J. F. Cryogels Composites: Recent Improvement in Bone Tissue Engineering. Nano letters 2024, 24, 13875–13887. doi:10.1021/acs.nanolett.4c03197
- Karakoç, V.; Bektaş, H.; Turkmen, D.; Denizli, A. Removal of As (V) from Water with Cryogels Prepared By Molecular Imprinting Technique. Hacettepe Journal of Biology and Chemistry 2024, 52, 217–236. doi:10.15671/hjbc.1446425
- Sousa, J. P. M.; Deus, I. A.; Monteiro, C. F.; Custódio, C. A.; Stratakis, E.; Mano, J. F.; Marques, P. A. A. P. Comparative analysis of aligned and random amniotic membrane-derived cryogels for neural tissue repair. Biomaterials science 2024, 12, 4393–4406. doi:10.1039/d4bm00364k
- Zhang, K.; Yang, Z.; Seitz, M. P.; Jain, E. Macroporous PEG-Alginate Hybrid Double-Network Cryogels with Tunable Degradation Rates Prepared via Radical-Free Cross-Linking for Cartilage Tissue Engineering. ACS applied bio materials 2024, 7, 5925–5938. doi:10.1021/acsabm.4c00091
- Patole, V.; Ingavle, G.; Behere, I.; Nehere, T.; Kolhe, P.; Baheti, R.; Swami, D. Emerging trends in polysaccharide based cryogel scaffold for skin tissue engineering. International Journal of Polymeric Materials and Polymeric Biomaterials 2024, 1–19. doi:10.1080/00914037.2024.2387028
- Santos, J. B.; Porfirio, M. C. P.; Santos, M. P. F.; Souza, Y. G. d.; Bonomo, R. C. F.; Fontan, R. d. C. I. Development of a glutamate-functionalized macroporous cation-exchange matrix for partial purification of lysozyme from chicken egg white. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2024, 694, 134224. doi:10.1016/j.colsurfa.2024.134224
- Mukasheva, F.; Moazzam, M.; Yernaimanova, B.; Shehzad, A.; Zhanbassynova, A.; Berillo, D.; Akilbekova, D. Design and characterization of 3D printed pore gradient hydrogel scaffold for bone tissue engineering. Bioprinting 2024, 39, e00341. doi:10.1016/j.bprint.2024.e00341
- Çimen, D.; Özbek, M. A.; Bereli, N.; Mattiasson, B.; Denizli, A. Injectable Functional Polymeric Cryogels for Biological Applications. Biomedical Materials & Devices 2024. doi:10.1007/s44174-024-00190-4
- Ari, B.; Suner, S. S.; Sahiner, M.; Demirci, S.; Sahiner, N. Slightly degradable, naturally antibacterial hydrogel matrixes derived from polyvinyl alcohol and linear/branched-polyethyleneimine as a wound dressing material. Journal of Macromolecular Science, Part A 2024, 61, 441–453. doi:10.1080/10601325.2024.2349953
- Calik, F.; Degirmenci, A.; Maouati, H.; Sanyal, R.; Sanyal, A. Redox-Responsive "Catch and Release" Cryogels: A Versatile Platform for Capture and Release of Proteins and Cells. ACS biomaterials science & engineering 2024, 10, 3017–3028. doi:10.1021/acsbiomaterials.4c00239
- Engel, N.; Hoffmann, T.; Behrendt, F.; Liebing, P.; Weber, C.; Gottschaldt, M.; Schubert, U. S. Cryogels Based on Poly(2-oxazoline)s through Development of Bi- and Trifunctional Cross-Linkers Incorporating End Groups with Adjustable Stability. Macromolecules 2024, 57, 2915–2927. doi:10.1021/acs.macromol.3c02030
- Abdi, G.; Jain, M.; Patil, N.; Tariq, M.; Choudhary, S.; Kumar, P.; Raj, N. S.; Mohsen Ali, S. S.; Uthappa, U. T. Tragacanth gum-based hydrogels for drug delivery and tissue engineering applications. Frontiers in Materials 2024, 11. doi:10.3389/fmats.2024.1296399
- Canatar, İ.; Özdaş, S.; Baydemir Peşint, G. Phyllanthus emblica‐Loaded Cryogels for Improved Wound Care: Characterization and In Vitro Studies. Macromolecular Materials and Engineering 2024, 309. doi:10.1002/mame.202300404
- Reece, B.; Bahar, E.; Cabrera Pereira, A.; Witek, L.; Kita, K. A Simple Staining Method Using Pyronin Y for Laser Scanning Confocal Microscopy to Evaluate Gelatin Cryogels. BIO-PROTOCOL 2024, 14. doi:10.21769/bioprotoc.5115
- Doser, G.; Su, E.; Okay, O. Effects of cryogenic condition and chemistry on the properties of synthetic and biopolymer cryogels. Reactive and Functional Polymers 2023, 190, 105635. doi:10.1016/j.reactfunctpolym.2023.105635
- Bilici, Ç.; Altunbek, M.; Afghah, F.; Tatar, A. G.; Koç, B. Embedded 3D Printing of Cryogel-Based Scaffolds. ACS biomaterials science & engineering 2023, 9, 5028–5038. doi:10.1021/acsbiomaterials.3c00751
- Zagni, C.; Coco, A.; Mecca, T.; Curcuruto, G.; Patamia, V.; Mangano, K.; Rescifina, A.; Carroccio, S. C. Sponge-like macroporous cyclodextrin-based cryogels for controlled drug delivery. Materials Chemistry Frontiers 2023, 7, 2693–2705. doi:10.1039/d3qm00139c
- Kudaibergen, G.; Akhmetkarimova, Z.; Yildirim, E.; Baidarbekov, M. Thiol-ene clickable gelatin–hyaluronic acid cryogels. Journal of Materials Science 2023, 58, 10821–10831. doi:10.1007/s10853-023-08693-z
- Demir, D.; Goksen, G.; Ceylan, S.; Trif, M.; Rusu, A. V. Optimized Peppermint Essential Oil Microcapsules Loaded into Gelatin-Based Cryogels with Enhanced Antimicrobial Activity. Polymers 2023, 15, 2782. doi:10.3390/polym15132782
- Dumitru, M. V.; Sandu, T.; Miron, A.; Zaharia, A.; Radu, I. C.; Gavrilă, A.-M.; Sârbu, A.; Iovu, H.; Chiriac, A.-L.; Iordache, T. V. Hybrid Cryogels with Superabsorbent Properties as Promising Materials for Penicillin G Retention. Gels (Basel, Switzerland) 2023, 9, 443. doi:10.3390/gels9060443