19F NMR as a tool in chemical biology

Diana Gimenez, Aoife Phelan, Cormac D. Murphy and Steven L. Cobb
Beilstein J. Org. Chem. 2021, 17, 293–318. https://doi.org/10.3762/bjoc.17.28

Cite the Following Article

19F NMR as a tool in chemical biology
Diana Gimenez, Aoife Phelan, Cormac D. Murphy and Steven L. Cobb
Beilstein J. Org. Chem. 2021, 17, 293–318. https://doi.org/10.3762/bjoc.17.28

How to Cite

Gimenez, D.; Phelan, A.; Murphy, C. D.; Cobb, S. L. Beilstein J. Org. Chem. 2021, 17, 293–318. doi:10.3762/bjoc.17.28

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 11.7 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Nkoana, J. K.; More, G. K.; Mphahlele, M. J.; Elhenawy, A. A. Synthesis and in vitro exploration of the 8-carbo substituted 5-methoxyflavones as anti-breast and anti-lung cancer agents targeting protein kinases (VEGFR-2 & EGFR). Bioorganic chemistry 2024, 153, 107875. doi:10.1016/j.bioorg.2024.107875
  • Li, S.; Wang, E.; Pei, L.; Deb, S.; Prabhala, P.; Nara, S. H. R.; Panda, R.; Eltepu, S.; Akl, M.; McMahan, L.; Njoo, E. Evaluation of machine learning models for the accelerated prediction of Density Functional Theory calculated 19F chemical shifts based on local atomic environments. Artificial Intelligence Chemistry 2024, 100078. doi:10.1016/j.aichem.2024.100078
  • Honfroy, A.; Bertouille, J.; Turea, A.-M.; Cauwenbergh, T.; Bridoux, J.; Lensen, N.; Mangialetto, J.; Van den Brande, N.; White, J. F.; Gardiner, J.; Brigaud, T.; Ballet, S.; Hernot, S.; Chaume, G.; Martin, C. Fluorinated Peptide Hydrogels Result in Longer In Vivo Residence Time after Subcutaneous Administration. Biomacromolecules 2024, 25, 6666–6680. doi:10.1021/acs.biomac.4c00872
  • Lunkov, S. S.; Kostromitin, V. S.; Zemtsov, A. A.; Levin, V. V.; Dilman, A. D. A photocatalytic method for the generation of the 1,1,1,3,3,3-hexafluoroisopropyl radical. Organic Chemistry Frontiers 2024, 11, 4762–4768. doi:10.1039/d4qo01023j
  • Cayrou, C.; Walrant, A.; Ravault, D.; Guitot, K.; Noinville, S.; Sagan, S.; Brigaud, T.; Gonzalez, S.; Ongeri, S.; Chaume, G. Incorporation of CF3-pseudoprolines into polyproline type II foldamers confers promising biophysical features. Chemical communications (Cambridge, England) 2024, 60, 8609–8612. doi:10.1039/d4cc02895c
  • Jann, C.; Giofré, S.; Bhattacharjee, R.; Lemke, E. A. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chemical reviews 2024, 124, 10281–10362. doi:10.1021/acs.chemrev.3c00878
  • Gómez–Colín, D.; Santana-Martínez, I.; Bautista-Renedo, J. M.; Martínez-Otero, D.; Reyes, H.; Unnamatla, M. B.; González-Rivas, N.; Cuevas-Yañez, E. Synthesis, crystal and structural studies of 5-alkynyl-1,2,3-triazoles. Journal of Molecular Structure 2024, 1310, 138212. doi:10.1016/j.molstruc.2024.138212
  • Matwani, K.; Cornish, J.; DeBenedictis, E. A.; Heller, G. T. Micromolar fluoride contamination arising from glass NMR tubes and a simple solution for biomolecular applications. Journal of biomolecular NMR 2024, 78, 161–167. doi:10.1007/s10858-024-00442-x
  • Hanson, G. S. M.; Coxon, C. R. Fluorinated Tags to Study Protein Conformation and Interactions Using 19F NMR. Chembiochem : a European journal of chemical biology 2024, 25, e202400195. doi:10.1002/cbic.202400195
  • Li, Y.; Huang, W.-S.; Zhang, L.; Su, D.; Xu, H.; Xue, X.-S. Prediction of 19F NMR chemical shift by machine learning. Artificial Intelligence Chemistry 2024, 2, 100043. doi:10.1016/j.aichem.2024.100043
  • Roy, S.; Majee, P.; Sudhakar, S.; Mishra, S.; Kalia, J.; Pradeepkumar, P. I.; Srivatsan, S. G. Structural elucidation of HIV-1 G-quadruplexes in a cellular environment and their ligand binding using responsive 19F-labeled nucleoside probes. Chemical science 2024, 15, 7982–7991. doi:10.1039/d4sc01755b
  • Monnie, C. M.; Hernández, I.; Meléndez‐Pacheco, R.; Bhinderwala, F.; Soloshonok, V. A.; Gronenborn, A. M.; Landa, A.; Oiarbide, M. Synthesis of 4,6‐Difluoro‐Tryptophan as a Probe for Protein 19F NMR. Advanced Synthesis & Catalysis 2024, 366, 3417–3422. doi:10.1002/adsc.202400031
  • Ganguly, H. K.; Ludwig, B. A.; Tressler, C. M.; Bhatt, M. R.; Pandey, A. K.; Quinn, C. M.; Bai, S.; Yap, G. P. A.; Zondlo, N. J. 4,4-Difluoroproline as a Unique 19F NMR Probe of Proline Conformation. Biochemistry 2024, 63, 1131–1146. doi:10.1021/acs.biochem.3c00697
  • Laxio Arenas, J.; Lesma, J.; Ha-Duong, T.; Ranjan Sahoo, B.; Ramamoorthy, A.; Tonali, N.; Soulier, J.-L.; Halgand, F.; Giraud, F.; Crousse, B.; Kaffy, J.; Ongeri, S. Composition and Conformation of Hetero- versus Homo-Fluorinated Triazolamers Influence their Activity on Islet Amyloid Polypeptide Aggregation. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202303887. doi:10.1002/chem.202303887
  • Khan, M. F.; Hof, C.; Niemcova, P.; Murphy, C. D. Biotransformation of fluorinated drugs and xenobiotics by the model fungus Cunninghamella elegans. Methods in enzymology 2024, 696, 251–285. doi:10.1016/bs.mie.2023.12.016
  • Costantino, A.; Pham, L. B. T.; Barbieri, L.; Calderone, V.; Ben-Nissan, G.; Sharon, M.; Banci, L.; Luchinat, E. Controlling the incorporation of fluorinated amino acids in human cells and its structural impact. Protein science : a publication of the Protein Society 2024, 33, e4910. doi:10.1002/pro.4910
  • Chai, Z.; Li, C. In-Cell 19F NMR of Proteins: Recent Progress and Future Opportunities. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202303988. doi:10.1002/chem.202303988
  • Matwani, K.; Cornish, J.; DeBenedictis, E. A.; Heller, G. T. Micromolar fluoride contamination arising from glass NMR tubes and a simple solution for biomolecular applications. Cold Spring Harbor Laboratory 2024. doi:10.1101/2024.02.12.579991
  • Batarchuk, V.; Shepelytskyi, Y.; Grynko, V.; Kovacs, A. H.; Hodgson, A.; Rodriguez, K.; Aldossary, R.; Talwar, T.; Hasselbrink, C.; Ruset, I. C.; DeBoef, B.; Albert, M. S. Hyperpolarized Xenon-129 Chemical Exchange Saturation Transfer (HyperCEST) Molecular Imaging: Achievements and Future Challenges. International journal of molecular sciences 2024, 25, 1939. doi:10.3390/ijms25031939
  • Frere, G. A.; Hasabnis, A.; Francisco, C. B.; Suleiman, M.; Alimowska, O.; Rahmatullah, R.; Gould, J.; Su, C. Y.-C.; Voznyy, O.; Gunning, P. T.; Basso, E. A.; Prosser, R. S. Next-Generation Tags for Fluorine Nuclear Magnetic Resonance: Designing Amplification of Chemical Shift Sensitivity. Journal of the American Chemical Society 2024, 146, 3052–3064. doi:10.1021/jacs.3c09730
Other Beilstein-Institut Open Science Activities