Synthesis of legonmycins A and B, C(7a)-hydroxylated bacterial pyrrolizidines

Wilfred J. M. Lewis, David M. Shaw and Jeremy Robertson
Beilstein J. Org. Chem. 2021, 17, 334–342. https://doi.org/10.3762/bjoc.17.31

Supporting Information

Supporting Information File 1: Copies of the NMR spectra for compounds 16, 17 (crude HCl salt and purified free-base), 22, 3 (legonmycin A), and 4 (legonmycin B).
Format: PDF Size: 807.6 KB Download

Cite the Following Article

Synthesis of legonmycins A and B, C(7a)-hydroxylated bacterial pyrrolizidines
Wilfred J. M. Lewis, David M. Shaw and Jeremy Robertson
Beilstein J. Org. Chem. 2021, 17, 334–342. https://doi.org/10.3762/bjoc.17.31

How to Cite

Lewis, W. J. M.; Shaw, D. M.; Robertson, J. Beilstein J. Org. Chem. 2021, 17, 334–342. doi:10.3762/bjoc.17.31

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 7.2 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Effert, J.; Westphalen, M.; Calderari, A.; Shi, Y.; Elamri, I.; Najah, S.; Grün, P.; Li, Y.; Gruez, A.; Weissman, K. J.; Bode, H. B. Pyrrolizwillin, ein Einzigartiges Bakterielles Alkaloid, Gebildet durch eine Kombination aus Nichtribosomaler Peptidsynthetase und nicht‐Enzymatischer Dimerisierung. Angewandte Chemie 2024. doi:10.1002/ange.202411258
  • Effert, J.; Westphalen, M.; Calderari, A.; Shi, Y.-M.; Elamri, I.; Najah, S.; Grün, P.; Li, Y.; Gruez, A.; Weissman, K. J.; Bode, H. B. Pyrrolizwilline, a Unique Bacterial Alkaloid Assembled by a Nonribosomal Peptide Synthetase and non-Enzymatic Dimerization. Angewandte Chemie (International ed. in English) 2024, e202411258. doi:10.1002/anie.202411258
  • Wang, S.; Maglangit, F.; Fang, Q.; Kyeremeh, K.; Deng, H. Characterization of the Baeyer-Villiger monooxygenase in the pathway of the bacterial pyrrolizidine alkaloids, legonmycins. RSC chemical biology 2024, 5, 1177–1185. doi:10.1039/d4cb00186a
  • Chen, Z.; Zhang, J.-J.; Huang, C.-Y.; Chen, W.-C.; He, L.-M.; Tang, Q.-Q.; Zhu, K.-K.; Li, J.; Gao, P.; Zhang, M.-K.; Cai, Y.-S. Penicipyrrolizidinones A-C, three pyrrolizidinone alkaloids with unprecedented skeletons from the mangrove-derived fungus Penicillium sp. DM27. Phytochemistry 2024, 229, 114273. doi:10.1016/j.phytochem.2024.114273
  • Atunnise, A. K.; Bodede, O.; Adewuyi, A.; Maharaj, V.; Prinsloo, G.; Salau, B. A. Metabolomics and in-vitro bioactivities studies of fermented Musa paradisiaca pulp: A potential alpha-amylase inhibitor. Heliyon 2024, 10, e24659. doi:10.1016/j.heliyon.2024.e24659
  • Jayawickreme, K.; Świstak, D.; Ozimek, E.; Reszczyńska, E.; Rysiak, A.; Makuch-Kocka, A.; Hanaka, A. Pyrrolizidine Alkaloids-Pros and Cons for Pharmaceutical and Medical Applications. International journal of molecular sciences 2023, 24, 16972. doi:10.3390/ijms242316972
  • Menges, N.; Amudi, K.; Kuzu, B.; Kolak, S.; Genç, H. Synthesis of Pyrrolizinone and Pyrrolizino[1,2-a]pyrrolizin-5-one Skeletons Starting From Pyrrole through a Single-Step and Catalyst-Free Approach. Synlett 2023, 34, 1265–1269. doi:10.1055/a-2006-4390
  • Atunnise, A. K.; Bodede, O.; Adewuyi, A.; Maharaj, V.; Prinsloo, G.; Salau, A. B. Metabolomics and In-Vitro Bioactivities Studies of Fermented Musa Paradisiaca Pulp: A Potential Resource for Managing Type Ii Diabetes Mellitus. Elsevier BV 2023. doi:10.2139/ssrn.4632237
  • Ernst, S.; Volkov, A. N.; Stark, M.; Hölscher, L.; Steinert, K.; Fetzner, S.; Hennecke, U.; Drees, S. L. Azetidomonamide and Diazetidomonapyridone Metabolites Control Biofilm Formation and Pigment Synthesis in Pseudomonas aeruginosa. Journal of the American Chemical Society 2022, 144, 7676–7685. doi:10.1021/jacs.1c13653
Other Beilstein-Institut Open Science Activities