Biochemistry of fluoroprolines: the prospect of making fluorine a bioelement

Vladimir Kubyshkin, Rebecca Davis and Nediljko Budisa
Beilstein J. Org. Chem. 2021, 17, 439–460. https://doi.org/10.3762/bjoc.17.40

Cite the Following Article

Biochemistry of fluoroprolines: the prospect of making fluorine a bioelement
Vladimir Kubyshkin, Rebecca Davis and Nediljko Budisa
Beilstein J. Org. Chem. 2021, 17, 439–460. https://doi.org/10.3762/bjoc.17.40

How to Cite

Kubyshkin, V.; Davis, R.; Budisa, N. Beilstein J. Org. Chem. 2021, 17, 439–460. doi:10.3762/bjoc.17.40

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 8.9 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kubyshkin, V.; Mykhailiuk, P. K. Proline Analogues in Drug Design: Current Trends and Future Prospects. Journal of Medicinal Chemistry 2024. doi:10.1021/acs.jmedchem.4c01987
  • Karbalaei-Heidari, H. R.; Budisa, N. Advanced and Safe Synthetic Microbial Chassis with Orthogonal Translation System Integration. ACS synthetic biology 2024, 13, 2992–3002. doi:10.1021/acssynbio.4c00437
  • Kubyshkin, V.; Rubini, M. Proline Analogues. Chemical reviews 2024, 124, 8130–8232. doi:10.1021/acs.chemrev.4c00007
  • Nieto-Domínguez, M.; Sako, A.; Enemark-Rasmussen, K.; Gotfredsen, C. H.; Rago, D.; Nikel, P. I. Enzymatic synthesis of mono- and trifluorinated alanine enantiomers expands the scope of fluorine biocatalysis. Communications chemistry 2024, 7, 104. doi:10.1038/s42004-024-01188-1
  • Ganguly, H. K.; Ludwig, B. A.; Tressler, C. M.; Bhatt, M. R.; Pandey, A. K.; Quinn, C. M.; Bai, S.; Yap, G. P. A.; Zondlo, N. J. 4,4-Difluoroproline as a Unique 19F NMR Probe of Proline Conformation. Biochemistry 2024, 63, 1131–1146. doi:10.1021/acs.biochem.3c00697
  • Loughlin, J. O.; Zinovjev, K.; Napolitano, S.; van der Kamp, M.; Rubini, M. 4-Thiaproline accelerates the slow folding phase of proteins containing cis prolines in the native state by two orders of magnitude. Protein science : a publication of the Protein Society 2024, 33, e4877. doi:10.1002/pro.4877
  • Nieto-Dominguez, M.; Sako, A.; Enemark-Rasmussen, K.; Gotfredsen, C. H.; Rago, D.; Nikel, P. I. High-yield enzymatic synthesis of mono– and trifluorinated alanine enantiomers. Cold Spring Harbor Laboratory 2023. doi:10.1101/2023.11.28.569005
  • Karbalaei-Heidari, H. R.; Budisa, N. Genomically integrated orthogonal translation inEscherichia coli, a new synthetic auxotrophic chassis with altered genetic code, genetic firewall, and enhanced protein expression. Cold Spring Harbor Laboratory 2023. doi:10.1101/2023.11.18.567690
  • Goettig, P.; Koch, N. G.; Budisa, N. Non-Canonical Amino Acids in Analyses of Protease Structure and Function. International journal of molecular sciences 2023, 24, 14035. doi:10.3390/ijms241814035
  • Miles, S. A.; Nillama, J. A.; Hunter, L. Tinker, Tailor, Soldier, Spy: The Diverse Roles That Fluorine Can Play within Amino Acid Side Chains. Molecules (Basel, Switzerland) 2023, 28, 6192. doi:10.3390/molecules28176192
  • O' Loughlin, J.; Zinovjev, K.; Napolitano, S.; van der Kamp, M.; Rubini, M. 4-Thiaproline accelerates the slow folding phase of proteins containingcisprolines in the native state by two orders of magnitude. Cold Spring Harbor Laboratory 2023. doi:10.1101/2023.06.23.546227
  • Li, Y.; Lu, D.; Gong, Y. Cu-catalysed three-component C–H trifluoroalkylation of glycine derivatives: access to diverse CF3-containing amino acids. Organic Chemistry Frontiers 2023, 10, 2301–2309. doi:10.1039/d3qo00267e
  • Chernykh, A. V.; Aloshyn, D.; Kuchkovska, Y. O.; Daniliuc, C. G.; Tolmachova, N. A.; Kondratov, I. S.; Zozulya, S.; Grygorenko, O. O.; Haufe, G. Impact of β-perfluoroalkyl substitution of proline on the proteolytic stability of its peptide derivatives. Organic & biomolecular chemistry 2022, 20, 9337–9350. doi:10.1039/d2ob01430k
  • Mykhailiuk, P. K. Fluorine-Containing Prolines: Synthetic Strategies, Applications, and Opportunities. The Journal of organic chemistry 2022, 87, 6961–7005. doi:10.1021/acs.joc.1c02956
  • Mardirossian, M.; Rubini, M.; Adamo, M. F. A.; Scocchi, M.; Saviano, M.; Tossi, A.; Gennaro, R.; Caporale, A. Natural and Synthetic Halogenated Amino Acids-Structural and Bioactive Features in Antimicrobial Peptides and Peptidomimetics. Molecules (Basel, Switzerland) 2021, 26, 7401. doi:10.3390/molecules26237401
  • Sinnaeve, D.; Bouzayene, A. B.; Ottoy, E.; Hofman, G.-J.; Erdmann, E.; Linclau, B.; Kuprov, I.; Martins, J. C.; Torbeev, V. Y.; Kieffer, B. Fluorine NMR study of proline-rich sequences using fluoroprolines. Magnetic resonance (Gottingen, Germany) 2021, 2, 795–813. doi:10.5194/mr-2-795-2021
  • Loughlin, J. O.; Napolitano, S.; Rubini, M. Protein Design with Fluoroprolines: 4,4-Difluoroproline Does Not Eliminate the Rate-Limiting Step of Thioredoxin Folding. Chembiochem : a European journal of chemical biology 2021, 22, 3326–3332. doi:10.1002/cbic.202100418
  • Zhu, Z.; Krishnamurti, V.; Ispizua-Rodriguez, X.; Barrett, C.; Prakash, G. K. S. Chemoselective N- and O-Difluoromethylation of 2-Pyridones, Isoquinolinones, and Quinolinones with TMSCF2Br. Organic letters 2021, 23, 6494–6498. doi:10.1021/acs.orglett.1c02305
  • Kubyshkin, V. Experimental lipophilicity scale for coded and noncoded amino acid residues. Organic & biomolecular chemistry 2021, 19, 7031–7040. doi:10.1039/d1ob01213d
Other Beilstein-Institut Open Science Activities