Beyond ribose and phosphate: Selected nucleic acid modifications for structure–function investigations and therapeutic applications

Christopher Liczner, Kieran Duke, Gabrielle Juneau, Martin Egli and Christopher J. Wilds
Beilstein J. Org. Chem. 2021, 17, 908–931. https://doi.org/10.3762/bjoc.17.76

Cite the Following Article

Beyond ribose and phosphate: Selected nucleic acid modifications for structure–function investigations and therapeutic applications
Christopher Liczner, Kieran Duke, Gabrielle Juneau, Martin Egli and Christopher J. Wilds
Beilstein J. Org. Chem. 2021, 17, 908–931. https://doi.org/10.3762/bjoc.17.76

How to Cite

Liczner, C.; Duke, K.; Juneau, G.; Egli, M.; Wilds, C. J. Beilstein J. Org. Chem. 2021, 17, 908–931. doi:10.3762/bjoc.17.76

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 11.1 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Das, G.; Harikrishna, S.; Gore, K. R. Investigating the Effect of Chemical Modifications on the Ribose Sugar Conformation, Watson-Crick Base Pairing, and Intrastrand Stacking Interactions: A Theoretical Approach. The journal of physical chemistry. B 2024, 128, 8313–8331. doi:10.1021/acs.jpcb.4c02557
  • Maseda, H.; Kim, S.; Matsushita, Y.; Katagiri, T. Efficiency of genome editing using modified single-stranded oligodeoxyribonucleotides in human cells. Springer Science and Business Media LLC 2024. doi:10.21203/rs.3.rs-4463420/v1
  • Yuan, W.; Shi, X.; Lee, L. T. O. RNA therapeutics in targeting G protein-coupled receptors: Recent advances and challenges. Molecular therapy. Nucleic acids 2024, 35, 102195. doi:10.1016/j.omtn.2024.102195
  • Gangopadhyay, S.; Das, G.; Gupta, S.; Ghosh, A.; Bagale, S. S.; Roy, P. K.; Mandal, M.; Harikrishna, S.; Sinha, S.; Gore, K. R. 4'-C-Acetamidomethyl-2'-O-methoxyethyl Nucleic Acid Modifications Improve Thermal Stability, Nuclease Resistance, Potency, and hAgo2 Binding of Small Interfering RNAs. The Journal of organic chemistry 2024, 89, 3747–3768. doi:10.1021/acs.joc.3c02506
  • Pal, C.; Richter, M.; Rozners, E. Synthesis and Properties of RNA Modified with Cationic Amine Internucleoside Linkage. ACS chemical biology 2024, 19, 249–253. doi:10.1021/acschembio.3c00784
  • Kowalski, K. Synthesis and chemical transformations of glycol nucleic acid (GNA) nucleosides. Bioorganic chemistry 2023, 141, 106921. doi:10.1016/j.bioorg.2023.106921
  • Rozners, E. Amides and Other Nonionic Backbone Modifications in RNA. Handbook of Chemical Biology of Nucleic Acids; Springer Nature Singapore, 2023; pp 2339–2359. doi:10.1007/978-981-19-9776-1_76
  • Sahoo, A.; Das, G.; Choudhary, N. K.; Harikrishna, S.; Gore, K. R. Synthesis and Structural Analysis of N3‐Methyluridine and 2'‐Alkoxy/Fluoro‐N3‐Methyluridine Nucleosides by Using NMR Spectroscopy, X‐Ray Crystallography, and Computational Methods. ChemistrySelect 2023, 8. doi:10.1002/slct.202301858
  • Oshchepkova, A.; Zenkova, M.; Vlassov, V. Extracellular Vesicles for Therapeutic Nucleic Acid Delivery: Loading Strategies and Challenges. International journal of molecular sciences 2023, 24, 7287. doi:10.3390/ijms24087287
  • Rozners, E. Amides and Other Nonionic Backbone Modifications in RNA. Handbook of Chemical Biology of Nucleic Acids; Springer Nature Singapore, 2023; pp 1–21. doi:10.1007/978-981-16-1313-5_76-1
  • Skiba, J.; Kowalczyk, A.; Gorski, A.; Dutkiewicz, N.; Gapińska, M.; Stróżek, J.; Woźniak, K.; Trzybiński, D.; Kowalski, K. Replacement of the phosphodiester backbone between canonical nucleosides with a dirhenium carbonyl "click" linker-a new class of luminescent organometallic dinucleoside phosphate mimics. Dalton transactions (Cambridge, England : 2003) 2023, 52, 1551–1567. doi:10.1039/d2dt03995h
  • Egli, M.; Schlegel, M. K.; Manoharan, M. Acyclic (S)-glycol nucleic acid (S-GNA) modification of siRNAs improves the safety of RNAi therapeutics while maintaining potency. RNA (New York, N.Y.) 2023, 29, 402–414. doi:10.1261/rna.079526.122
  • Lee, S. H.; Ng, C. X.; Wong, S. R.; Chong, P. P. MiRNAs Overexpression and Their Role in Breast Cancer: Implications for Cancer Therapeutics. Current drug targets 2023, 24, 484–508. doi:10.2174/1389450124666230329123409
  • Ivanov, G. S.; Tribulovich, V. G.; Pestov, N. B.; David, T. I.; Amoah, A.-S.; Korneenko, T. V.; Barlev, N. A. Artificial genetic polymers against human pathologies. Biology direct 2022, 17, 39. doi:10.1186/s13062-022-00353-7
  • Hyjek-Składanowska, M.; Anderson, B. A.; Mykhaylyk, V.; Orr, C.; Wagner, A.; Poznański, J. T.; Skowronek, K.; Seth, P.; Nowotny, M. Structures of annexin A2-PS DNA complexes show dominance of hydrophobic interactions in phosphorothioate binding. Nucleic acids research 2022, 51, 1409–1423. doi:10.1093/nar/gkac774
  • Das, G.; Harikrishna, S.; Gore, K. R. Influence of Sugar Modifications on the Nucleoside Conformation and Oligonucleotide Stability: A Critical Review. Chemical record (New York, N.Y.) 2022, 22, e202200174. doi:10.1002/tcr.202200174
  • Boyanapalli, R.; Singh, I.; Faria, M. Peptides and Oligonucleotide-Based Therapy: Bioanalytical Challenges and Practical Solutions. AAPS Advances in the Pharmaceutical Sciences Series; Springer International Publishing, 2022; pp 131–155. doi:10.1007/978-3-030-97193-9_6
  • Kalaiarasi, K.; Sudha, P.; Kausar, N.; Kousar, S.; Pamucar, D.; Ide, N. A. D. The Characterization of Substructures of γ‐Anti Fuzzy Subgroups with Application in Genetics. Discrete Dynamics in Nature and Society 2022, 2022. doi:10.1155/2022/1252885
  • Gangopadhyay, S.; Gore, K. R. Advances in siRNA therapeutics and synergistic effect on siRNA activity using emerging dual ribose modifications. RNA biology 2022, 19, 452–467. doi:10.1080/15476286.2022.2052641
  • Aralov, A. V.; Gubina, N.; Cabrero, C.; Tsvetkov, V. B.; Turaev, A. V.; Fedeles, B. I.; Croy, R. G.; Isaakova, E. A.; Melnik, D.; Dukova, S.; Ryazantsev, D. Y.; Khrulev, A. A.; Varizhuk, A. M.; González, C.; Zatsepin, T. S.; Essigmann, J. M. 7,8-Dihydro-8-oxo-1,N6-ethenoadenine: an exclusively Hoogsteen-paired thymine mimic in DNA that induces A→T transversions in Escherichia coli. Nucleic acids research 2022, 50, 3056–3069. doi:10.1093/nar/gkac148

Patents

  • ANASTASSIADIS THEONIE; BUTLER DAVID; KUBICA NEIL; LI QINGYI; NGOUNOU WETIE ARMAND; YU HONGCHUAN; KIESMAN WILLIAM; WANG GUANGLIANG. COMPOSITIONS OF MODIFIED TREMS AND USES THEREOF. WO 2023250112 A1, Dec 28, 2023.
  • CZECH MICHAEL P; YENILMEZ BATUHAN ORBAY; KHVOROVA ANASTASIA. OLIGONUCLEOTIDES FOR DGAT2 MODULATION. US 20220228141 A1, July 21, 2022.
Other Beilstein-Institut Open Science Activities