Abstract
The cytochrome P450 monooxygenase (CYP) superfamily comprises hemethiolate enzymes that perform remarkable regio- and stereospecific oxidative chemistry. As such, CYPs are key agents for the structural and functional tailoring of triterpenoids, one of the largest classes of plant natural products with widespread applications in pharmaceuticals, food, cosmetics, and agricultural industries. In this review, we provide a full overview of 149 functionally characterised CYPs involved in the biosynthesis of triterpenoids and steroids in primary as well as in specialised metabolism. We describe the phylogenetic distribution of triterpenoid- and steroid-modifying CYPs across the plant CYPome, present a structure-based summary of their reactions, and highlight recent examples of particular interest to the field. Our review therefore provides a comprehensive up-to-date picture of CYPs involved in the biosynthesis of triterpenoids and steroids in plants as a starting point for future research.
Introduction
Triterpenoids are a large class of natural products derived from precursors containing 30 carbon atoms and composed of six isoprene units (C5). The structural variety of triterpenoids found in plants is particularly astonishing, and so are their biological activities. To date, more than 20,000 different plant triterpenoids have been identified, and many of these have found applications in agronomic [1], food [2], cosmetics [3] and pharmaceutical industries [4]. Plant triterpenoids include primary metabolites such as phytosterols or steroidal hormones such as brassinosteroids, but also specialised metabolites that convey diverse biological functions [5]. A key factor for the structural richness of triterpenoids and steroids from plants lies in their extensive oxidative tailoring, which in many cases is carried out by cytochrome P450 monooxygenases (CYPs). CYPs represent one of the largest superfamilies of enzymes in plants; in many species, around 1% of all genes encode CYPs [6]. CYPs are well-known for their capacity to catalyse highly regio- and stereospecific reactions on complex substrates. Besides simple hydroxylations, they can also introduce oxo, carboxy, or epoxy moieties or double bonds. Such decorations often also enable additional layers of diversification by glycosyltransferases or acyltransferases [7]. Hence, there is considerable interest in CYPs involved in triterpenoid and steroid metabolism in plants not only for improving our understanding of plant specialised metabolism, but also for synthetic biology and chemoenzymatic synthesis. In this review, we will provide an extensive overview of CYPs involved in tailoring of triterpenoids and steroids in plants. We will first introduce the nomenclature and mechanistic properties of these enzymes, before we describe the phylogenetic distribution of triterpenoid-modifying CYPs and summarise their reaction space. Lastly, we will highlight selected recent examples of multifunctional CYPs that catalyse particularly remarkable modifications of triterpenoids. We therefore hope to provide an up-to-date overview over these key enzymes in plant triterpenoid and steroid metabolism since the last comparable endeavour from Ghosh in 2017 [7]. In addition, readers might also be interested in other excellent reviews or resources providing a more general overview over plant CYPs or CYPs from other plant pathways [6,8-13].
Review
Nomenclature
Considering the enormous numbers of genes encoding cytochrome P450 monooxygenases in plants, a universal naming system is crucial to group related CYPs and to facilitate functional predictions. Hence, CYPs from all kingdoms are systematically named according to their amino acid identity by the cytochrome P450 nomenclature committee (David Nelson: dnelson@uthsc.edu). CYPs are grouped into clans, families, and subfamilies. The broadest hierarchy level is represented by clans, which comprise one or multiple families. An example CYP name is CYP51G1; here, “CYP51” designates the family, “G” refers to the subfamily within the CYP51 family, and “1” represents the isoform of CYPs in this subfamily [14]. Typically, all CYPs in the same subfamily share more than 55% amino acid sequence identity, and all CYPs in the same family more than 40%, although exceptions exist [15,16]. These thresholds also underline the remarkable sequence variety of CYPs, as even enzymes with only 60–70% amino acid identity can display almost identical biochemical activity.
Enzymatic mechanism
As monooxygenases, CYPs catalyse the transfer of a single oxygen atom from molecular oxygen to their substrates (Figure 1A). Decades of research on CYPs led to detailed insights into their mechanistic properties based on a variety of biochemical, biophysical and computational methods [17-21]. Key for the oxidative chemistry performed by CYPs is a heme prosthetic group that activates molecular oxygen using electrons from an electron donor such as NADPH. A central Fe(III) ion is coordinated by the heme porphyrine system as well as a cysteine thiolate ligand from the protein backbone (Figure 1B). The generally accepted catalytic cycle for hydroxylations is shown in Figure 1C.
In the resting state A, the central ferric ion is coordinated by six ligands, four from the porphyrin ring system, one cysteine thiolate group and an aqua ligand (water), resulting in an octahedral complex [17]. The oxidative reaction is initiated by displacement of the axial water molecule by the substrate (step 1), which pushes the Fe(III) ion out of the porphyrin plane in intermediate B [17]. This geometrical distortion promotes electron transfer from a reductase partner protein (step 2). The most common electron donors in plants are cytochrome P450 reductases which employ NADPH for the electron transfer, but several other electron transfer systems are known [22]. The reduced ferrous intermediate C, bearing an overall negative charge, can then efficiently bind molecular oxygen (step 3), leading to dioxygen adduct D. Transfer of an additional electron from a reducing partner such as cytochrome P450 reductase (step 4) generates peroxo intermediate E, which upon protonation (step 5) gives hydroperoxo intermediate F, also called compound 0. This nucleophilic and basic intermediate is prone to dehydration (step 6), leading to the strongly electrophilic and oxidising key intermediate G, which is commonly known as compound I (cpd I). Although there has been a lot of debate regarding the exact structure and electronic properties of compound I (intermediate G), it is now generally accepted as a ferryl (Fe(IV)) oxo species with a radical cation in the porphyrin system [18,23]. In the case of hydroxylations, the oxygen from compound I (intermediate G) can then be transferred by an oxygen rebound mechanism (steps 7 and 8) via the ferryl hydroxy intermediate H, also known as compound II. This leads to the hydroxylated product coordinated to ferric ion (intermediate I). Lastly, displacement of the product by water regenerates the resting state A (step 9). In addition to simple hydroxylations, slight deviations from this general mechanistic cycle can also lead to different reaction outcomes, e.g., rearrangements, desaturations or epoxidations. Multiple oxidation rounds, leading to aldehydes/ketones or carboxylic acids, are also commonly observed. Together, this versatile oxidative chemistry makes CYPs key enzymes in specialised metabolism in general [8,11], and crucial agents for the structural diversity of triterpenes.
Phylogenetic distribution of triterpenoid- and steroid-modifying plant cytochrome P450 monooxygenases
To assess the phylogenetic distribution of triterpenoid-modifying CYPs in comparison to other CYPs from plants, we collected a total of 149 CYPs from plants reported in the literature which are involved in triterpenoid or steroid metabolism (Table 1), and generated a neighbour-joining tree together with 266 non-triterpenoid CYPs with a different substrate scope (Figure 2). Notably, our analysis highlights that triterpenoid CYPs do not seem to occur randomly in various CYP clans and families; instead, certain clans and families represent “hotspots” of triterpenoid/steroid-modifying CYPs.
Table 1: List of characterised plant cytochrome P450 monooxygenases (CYPs) modifying triterpenoids or steroids.
Name | Clan | Family | Species | Accession number | Scaffold | Substrate | Reaction | Product | Ref. |
CYP51G1 | 51 | 51 | Sorghum bicolor | XM_0214610212.1 | steroid | obtusifoliol | C14α demethylation |
4α-methyl-
5α-ergosta-8, 14,24(28)- trien-3β-ol |
[24] |
CYP51G1 | 51 | 51 | Arabidopsis thaliana | AB014459 | steroid | obtusifoliol | C14α demethylation |
4α-methyl-
5α-ergosta-8, 14,24(28)- trien-3β-ol |
[25] |
CYP51H10 | 51 | 51 | Avena strigosa | DQ680852 | pentacyclic oleanane | β-amyrin | C12–C13β epoxidation / C16 β hydroxlation |
12,13-β-
epoxy-16-β- hydroxy- amyrin |
[1] |
CYP51H14 | 51 | 51 |
Brachy-
podium distachyon |
ON108677 | pentacyclic triterpene |
19-hydroxy-
isoarborinol |
C7 and C28 hydroxylation |
7,19,28-tri-
hydroxyiso- arborinol |
[26] |
CYP51H15 | 51 | 51 |
Brachy-
podium distachyon |
ON108678 | pentacyclic triterpene | isoarborinol | C19 hydroxylation |
19-hydroxy-
isoarborinol |
[26] |
CYP51H16 | 51 | 51 |
Brachy-
podium distachyon |
ON108679 | pentacyclic triterpene |
7,19,28-tri-
hydroxyiso- arborinol |
C1 hydroxylation |
1,7,19,28-
tetrahydroxy- isoarborinol |
[26] |
CYP51H35 | 51 | 51 | Triticum aestivum | ON108669 | pentacyclic triterpene | isoarborinol | C19 hydroxylation |
19-hydroxy-
isoarborinol |
[26] |
CYP51H37 | 51 | 51 | Triticum aestivum | ON108670 | pentacyclic triterpene |
19-hydroxy-
isoarborinol |
C25 hydroxylation and C2 oxidation | ellarinacin | [26] |
CYP71A16 | 71 | 71 | Arabidopsis thaliana | NM_123623.5 | monocyclic triterpene aldehyde |
marneral /
marnerol |
C23 hydroxylation |
23-hydroxy-
marneral / 23-hydroxy- marnerol |
[27,28] |
CYP71BQ5 | 71 | 71 | Melia azedarach | MK803264.1 | tirucallane triterpenoid | dihydroniloticin | C21 hydroxylation | melianol | [29] |
CYP71CD2 | 71 | 71 | Melia azedarach | MK803271 | tirucallane triterpenoid |
tirucalla-7,24-
dien-3β-ol |
C23 hydroxylation and C24–C25 epoxidation |
dihydro-
niloticin |
[29] |
CYP71D353 | 71 | 71 | Lotus japonicus | KF460438 | pentacyclic lupane |
dihydrolupeol /
20-hydroxy- lupeol |
C20 hydroxylation / C28 oxidation |
20-hydroxy-
lupeol / 20-hydroxy- betulinic acid |
[30] |
CYP71D443 | 71 | 71 | Ajuga reptans | LC066937 | steroid |
3β-hydroxy-5β-
cholestan-6-one |
C22 hydroxylation |
3β,22R-
dihydroxy-5β- cholestan-6- one |
[31] |
CYP81AQ19 | 71 | 81 | Momordica charantia | LC456843 | tetracyclic triterpenoid | cucurbitadienol | C23α hydroxylation |
cucurbita-
5,24-dien- 3,23α-diol |
[32] |
CYP81Q58 | 71 | 81 | Cucumis sativus | KM655856 | tetracyclic triterpenoid |
19-hydroxy-
cucurbitadienol |
C25 hydroxylation / double bond shift |
19,25-
dihydroxy- cucurbita- dienol |
[33] |
CYP81Q59 | 71 | 81 | Cucumis melo | Melo3C022375 | tetracyclic triterpenoid |
11-carbonyl-
20β-hydroxy- cucurbitadienol |
C2β hydroxylation |
11-carbonyl-
2β,20β- dihydroxy- cucurbita dienol |
[34] |
CYP82J17 | 71 | 82 |
Trigonella foenum-
graecum |
MK636709 | steroid |
16S-hydroxy-
22-oxo- cholesterol |
C27 hydroxy-
lation / spiro- ketalisation |
diosgenin | [35] |
CYP93A220 / IaAO5 | 71 | 93 | Ilex asprella | MZ508433 | pentacyclic oleanane | β-amyrin | C24 oxidation | α-boswellic acid | [36] |
CYP93E1 | 71 | 93 | Glycine max | AB231332 | pentacyclic oleanane |
β-amyrin /
sophoradiol |
C24 hydroxylation |
24-hydroxy-
β-amyrin / soyasapo- genol B |
[37] |
CYP93E2 | 71 | 93 | Medicago truncatula | DQ335790 | pentacyclic oleanane | β-amyrin | C24 hydroxylation |
24-hydroxy-
β-amyrin |
[38] |
CYP93E3 | 71 | 93 | Glycyrrhiza uralensis | AB437320 | pentacyclic oleanane | β-amyrin | C24 hydroxylation |
24-hydroxy-
β-amyrin |
[39] |
CYP93E4 | 71 | 93 | Arachis hypogaea | KF906535 | pentacyclic oleanane | β-amyrin | C24 hydroxylation |
24-hydroxy-
β-amyrin |
[40] |
CYP93E5 | 71 | 93 | Cicer arietinum | KF906536 | pentacyclic oleanane | β-amyrin | C24 hydroxylation |
24-hydroxy-
β-amyrin |
[40] |
CYP93E6 | 71 | 93 | Glycyrrhiza glabra | KF906537 | pentacyclic oleanane | β-amyrin | C24 hydroxylation |
24-hydroxy-
β-amyrin |
[40] |
CYP93E7 | 71 | 93 | Lens culinaris | KF906538 | pentacyclic oleanane | β-amyrin | C24 hydroxylation |
24-hydroxy-
β-amyrin |
[40] |
CYP93E8 | 71 | 93 | Pisum sativum | KF906539 | pentacyclic oleanane | β-amyrin | C24 hydroxylation |
24-hydroxy-
β-amyrin |
[40] |
CYP93E9 | 71 | 93 | Phaseolus vulgaris | KF906540 | pentacyclic oleanane | β-amyrin | C24 hydroxylation |
24-hydroxy-
β-amyrin |
[40] |
CYP705A1 | 71 | 705 | Arabidopsis thaliana | NM_001341032.1 | tricyclic triterpenoid | arabidiol | C15–C16 cleavage |
14-apo-
arabidiol |
[28] |
CYP705A5 | 71 | 705 | Arabidopsis thaliana | NM_124173.3 | tricyclic triterpenoid |
7β-hydroxy-
thalianol |
C15–C16 desaturation |
desaturated
(C15–C16) 7β-hydroxy- thalianol |
[41] |
CYP712K1 | 71 | 712 | Tripterygium wilfordii | MN621243 | pentacyclic triterpenoid | friedelin | C29 oxidation |
polpunonic
acid and 29-hydroxy- friedelin |
[42] |
CYP712K2 | 71 | 712 | Tripterygium wilfordii | MN621244 | pentacyclic triterpenoid | friedelin | C29 oxidation |
polpunonic
acid and 29-hydroxy- friedelin |
[42] |
CYP712K3 | 71 | 712 | Tripterygium wilfordii | MN621245 | pentacyclic triterpenoid | friedelin | C29 oxidation |
polpunonic
acid and 29-hydroxy- friedelin |
[42] |
CYP712K4 | 71 | 712 | Maytenus ilicifolia | MK829814 | pentacyclic triterpenoid | friedelin | C29 oxidation |
polpunonic
acid or maytenoic acid |
[43] |
CYP72A61 | 72 | 72 | Medicago truncatula | DQ335793 | pentacyclic oleanane |
24-hydroxy-
β-amyrin |
C22 hydroxylation |
soyasapo-
genol B |
[44] |
CYP72A61v2 | 72 | 72 | Medicago truncatula | XM_003605422 | pentacyclic oleanane |
24-hydroxy-
β-amyrin |
C22 hydroxylation |
soyasapo-
genol B |
[44] |
CYP72A62v2 | 72 | 72 | Medicago truncatula | AB558147 | pentacyclic oleanane | β-amyrin | C29 oxidation |
29-hydroxy-
β-amyrin / epi-katonic acid |
[45] |
CYP72A63 | 72 | 72 | Medicago truncatula | AB558146 | pentacyclic oleanane | β-amyrin | C30 oxidation |
11-deoxy-
glycyrrhen- tinic acid |
[46] |
CYP72A64v2 | 72 | 72 | Medicago truncatula | MK534548 | pentacyclic oleanane | β-amyrin | C29 oxidation |
29-hydroxy-
β-amyrin / epi-katonic acid |
[45] |
CYP72A65v2 | 72 | 72 | Medicago truncatula | XM_003628012.4 | pentacyclic oleanane | β-amyrin | C21 hydroxylation |
21-hydroxy-
β-amyrin |
[45] |
CYP72A67 | 72 | 72 | Medicago truncatula | DQ335780 | pentacyclic oleanane |
oleanolic acid /
hederagenin / gypsogenic acid / gypsogenin |
C2β hydroxylation |
2β-hydroxy-
oleanolic acid / bayogenin / medicagenic acid / 2β,3β- dihydroxy- olean-12-en- 23-oxo-28- oic acid |
[47,48] |
CYP72A68 | 72 | 72 | Medicago truncatula | DQ335782 | pentacyclic oleanane |
oleanolic acid /
hederagenin / gypsogenin |
C23 oxidation |
hederagenin
/ gypsogenin / gypsogenic acid |
[48] |
CYP72A68v2 | 72 | 72 | Medicago truncatula | XM_013608494.3 | pentacyclic oleanane |
oleanolic acid /
hederagenin / gypsogenin |
C23 oxidation |
hedera-
genin / gypsogenin / gypsogenic acid |
[44] |
CYP72A69 | 72 | 72 | Glycine max | LC143440 | pentacyclic oleanane | soyasapogenol B | C21 hydroxylation |
soyasapo-
genol A |
[49] |
CYP72A141 | 72 | 72 | Glycine max | MK534532 | pentacyclic oleanane | β-amyrin | C29 hydroxylation |
29-hydroxy-
β-amyrin |
[45] |
CYP72A154 | 72 | 72 | Glycyrrhiza uralensis | AB558153 | pentacyclic oleanane |
β-amyrin /
11-oxo-β-amyrin |
C30 oxidation |
30-hydroxy-
β-amyrin / glycyrrhetinic acid |
[46] |
CYP72A302 | 72 | 72 | Phaseolus vulgaris | MK534537 | pentacyclic oleanane | β-amyrin | C29 hydroxylation |
29-hydroxy-
β-amyrin |
[45] |
CYP72A397 | 72 | 72 | Kalopanax septemlobus | KT150517 | pentacyclic oleanane | oleanolic acid | C23 oxidation | hederagenin | [50] |
CYP72A552 | 72 | 72 | Barbarea vulgaris | MH252571 | pentacyclic oleanane | oleanolic acid | C23 oxidation | hederagenin | [51] |
CYP72A557 | 72 | 72 | Medicago truncatula | MK534544 | pentacyclic oleanane | β-amyrin | C21 hydroxylation |
21-hydroxy-
β-amyrin |
[45] |
CYP72A558 | 72 | 72 | Medicago truncatula | MK534545 | pentacyclic oleanane | β-amyrin | C21 hydroxylation |
21-hydroxy-
β-amyrin |
[45] |
CYP72A559 | 72 | 72 | Medicago truncatula | MK534546 | pentacyclic oleanane | β-amyrin | C21 hydroxylation |
21-hydroxy-
β-amyrin |
[45] |
CYP72A613 | 72 | 72 |
Trigonella foenum-
graecum |
MK636708 | steroid |
16S-hydroxy-
22-oxo- cholesterol |
C27 hydroxylation / spiro-
ketalisation |
diosgenin | [35] |
CYP72A616 | 72 | 72 | Paris polyphylla | MK636705 | steroid |
16S-hydroxy-
22-oxo- cholesterol |
C27 hydroxy-
lation / spiro- ketalisation |
diosgenin | [35] |
CYP72A694 | 72 | 72 | Vigna angularis | MK534538 | pentacyclic oleanane |
β-amyrin /
29-hydroxy- β-amyrin |
C29 oxidation |
29-hydroxy-
β-amyrin / epi-katonic acid |
[45] |
CYP72A697 | 72 | 72 | Lotus japonicus | MK534539 | pentacyclic oleanane | β-amyrin | C29 hydroxylation |
29-hydroxy-
β-amyrin |
[45] |
CYP72A699 | 72 | 72 | Trifolium pratense | MK534549 | pentacyclic oleanane |
β-amyrin /
29-hydroxy- β-amyrin |
C29 oxidation |
29-hydroxy-
ß-amyrin / epi-katonic acid |
[45] |
CYP714E19 | 72 | 714 | Centella asiatica | KT004520 | pentacyclic oleanane / ursane |
oleanolic acid /
ursolic acid |
C23 oxidation |
hederagenin
/ 23- hydroxy- ursolic acid |
[52] |
CYP714E88 / IaAO4 | 72 | 714 | Ilex asprella | MZ508437 | pentacyclic oleanane / ursane |
ursolic acid /
oleanolic acid |
C23 oxidation |
23-carboxyl-
ursolic acid / gypsogenic acid |
[36] |
CYP734A7 | 72 | 734 |
Solanum lycoper-
sicum |
AB223041 | steroid |
castasterone /
28-nor- castasterone / brassinolide |
C26 hydroxylation |
26-hydroxy-
castaster- one / 26-hydroxy- norcastaster- one / 26-hydroxy- brassinolide |
[53] |
CYP749A63 | 72 | 749 | Crataegus pinnatifida | MF596155 | pentacyclic oleanane | oleanolic acid | C24 hydroxylation |
4-epi-
hederagenin |
[54] |
CYP85A1 | 85 | 85 | Arabidopsis thaliana | AB035868 | steroid |
6-deoxoteaster-
one / 3-dehydro- 6-deoxoteaster- one / 6-deoxo- typhasterol / 6-deoxo- castasterone |
C6 oxidation |
teasterone /
3-dehydro- teasterone / typhasterol / castasterone |
[55] |
CYP85A1 | 85 | 85 |
Solanum lycoper-
sicum |
U54770 | steroid |
6-deoxoteaster-
one / 3-dehydro- 6-deoxoteaster- one / 6-deoxo- typhasterol / 6-deoxo- castasterone |
C6 oxidation |
teasterone /
3-dehydro- teasterone / typhasterol / castasterone |
[56] |
CYP85A2 | 85 | 85 | Arabidopsis thaliana | AB087801 | steroid |
castasterone /
6-deoxo- castaster- one / 6-deoxo- typhasterol / 3-dehydro-6- deoxo- teaster- one |
Baeyer-
Villiger oxidation / C6 oxidation |
brassinolide /
castaster- one / typhasterol / 3-dehydro- teasterone |
[57,58] |
CYP85A3 | 85 | 85 |
Solanum lycoper-
sicum |
AB190445 | steroid |
6-deoxocastas-
terone / castasterone |
Baeyer-
Villiger oxidation / C6 oxidation |
castasterone
/ brassinolide |
[58] |
CYP87D16 | 85 | 87 | Maesa lanceolata | KF318735 | pentacyclic oleanane | β-amyrin | C16α hydroxylation |
16α-hydroxy-
β-amyrin |
[59] |
CYP87D18 | 85 | 87 | Siraitia grosvenorii | HQ128570 | tetracyclic triterpenoid |
cucurbitadienol /
11α-hydroxy- cucurbitadienol/ 24,25-di- hydroxy- cucurbitadienol |
C11 oxidation |
11α-hydroxy-
cucurbita- dienol / 11-oxo- cucurbita- dienol / mogrol |
[34] |
CYP87D20 | 85 | 87 | Cucumis sativus | Csa1G044890 | tetracyclic triterpenoid |
cucurbitadienol /
11-oxo-cucur- bitadienol |
C11 oxidation / C20β hydroxylation |
11-oxocucur-
bitadienol / 11-carbonyl- 20β-hydroxy- cucurbita- dienol |
[34] |
CYP88D6 | 85 | 88 | Glycyrrhiza uralensis | AB433179 | pentacyclic oleanane | β-amyrin | C11 oxidation |
11-oxo-β-
amyrin |
[39] |
CYP88L2 | 85 | 88 | Cucumis sativus | Csa3G903540 | tetracyclic triterpenoid |
cucurbitadienol /
11-oxo-cucur- bitadienol |
C19 hydroxylation |
19-hydroxy-
cucurbita- dienol |
[34] |
CYP88L7 | 85 | 88 | Momordica charantia | LC456844 | tetracyclic triterpenoid | cucurbitadienol | C19 hydroxylation, C5 and C19 ether bridge |
cucurbita-
5,24-dien- 3β,19-diol and 5β,19- epoxy- cucurbita- 6,24-dien- 3β-ol |
[32] |
CYP88L8 | 85 | 88 | Momordica charantia | LC456845 | tetracyclic triterpenoid | cucurbitadienol | C7β hydroxylation |
cucurbita-
5,24-dien- 3β,7β-diol |
[32] |
CYP90A1 | 85 | 90 | Arabidopsis thaliana | X87367 | steroid |
6-deoxocat-
hasterone / 6-deoxoteaster- one / 22S-hydroxy- campesterol / 22R,23R-di- hydroxycam- pesterol |
C3 oxidation |
22S-hydroxy-
5α-campes- tan-3-one / 3-dehydro-6- deoxo- teasterone/ 22S-hydroxy- campest-4- en-3-one / 22R,23R- dihydroxy- campest-4- en-3-one |
[60] |
CYP90B1 | 85 | 90 | Arabidopsis thaliana | NM_114926.4 | steroid |
campesterol /
24R-ergost-4- en-3-one / 24R-5α-ergos- tan-3-one / campestanol / 6-oxocampes- tanol |
C22 hydroxylation |
22S-hydroxy-
campesterol / 22S-hydroxy- 24R-ergost- 4-en-3-one / 22S-hydroxy- 24R- 5α- ergostan-3- one / 6- deoxocat- hasterone / cathasterone |
[61] |
CYP90B2 | 85 | 90 | Oryza sativa | AB206579 | steroid |
campesterol /
campestanol |
C22 hydroxylation |
22S-hydroxy-
campesterol / 6-deoxo- cathasterone |
[62] |
CYP90B3 | 85 | 90 |
Solanum lycoper-
sicum |
NM_001279330.2 | steroid |
campesterol /
24R-ergost-4- en-3-one / 24R-5α-ergos- tan-3-one / campestanol |
C22 hydroxylation |
22-hydroxy-
campesterol / 22S-hydroxy- 24R-ergost- 4-en-3-one / 22S-hydroxy- 24R-5α- ergostan-3- one / 6-deoxo- cathasterone |
[63] |
CYP90B27 | 85 | 90 | Veratrum californicum | KJ869252 | steroid |
cholesterol /
26-hydroxy- cholesterol / 7ß-hydroxy- cholesterol |
C22 hydroxylation |
22R-hydroxy-
cholesterol / 22,26-di- hydroxy- cholesterol / 7ß,22-di- hydroxy- cholesterol |
[64] |
CYP90B27 | 85 | 90 | Paris polyphylla | KX904822 | steroid | cholesterol | C22 hydroxylation |
22R-hydroxy-
cholesterol |
[65] |
CYP90B50 | 85 | 90 |
Trigonella foenum-
graecum |
MK636707 | steroid | cholesterol |
C22R, C16 dihydroxy-
lation |
16S,22R-
dihydroxy- cholesterol |
[35] |
CYP90B51 | 85 | 90 |
Trigonella foenum-
graecum |
MK636706 | steroid | cholesterol | C22S hydroxylation / C22R hydroxylation |
22S-hydroxy-
cholesterol / 22R-hydroxy- cholesterol |
[66] |
CYP90B52 | 85 | 90 | Paris polyphylla | MK636701 | steroid | cholesterol | C22S hydroxylation |
22S-hydroxy-
cholesterol |
[35] |
CYP90B71 | 85 | 90 |
Dioscorea
zingi- berensis |
MN829441 | steroid | cholesterol | C22R hydroxylation |
22R-hydroxy-
cholesterol |
[66] |
CYP90C1 | 85 | 90 | Arabidopsis thaliana | NM_001342408.1 | steroid |
22S-hydroxy-
24R-5α-ergost- an-3-one / 3-epi-6- deoxocat- hasterone |
C23 hydroxylation |
3-dehydro-6-
deoxoteas- terone / 6-deoxo- typhasterol |
[67] |
CYP90D1 | 85 | 90 | Arabidopsis thaliana | NM_112223 | steroid |
22S-hydroxy-
24R-5α-ergost- an-3-one / 3-epi-6- deoxocat- hasterone |
C23 hydroxylation |
3-dehydro-6-deoxoteas-
terone / 6-deoxo- typhasterol |
[67] |
CYP90D2 | 85 | 90 | Oryza sativa | NM_001409071 | steroid |
22S-hydroxy-
24R-5α-ergost- an-3-one / 3-epi-6- deoxocat- hasterone |
C23 hydroxylation |
3-dehydro-6-
deoxoteas- terone / 6-deoxo- typhasterol |
[68] |
CYP90D3 | 85 | 90 | Oryza sativa | AAT44310 | steroid |
22S-hydroxy-
24R-5α-ergost- an-3-one / 3-epi-6- deoxocat- hasterone |
C23 hydroxylation |
3-dehydro-6-
deoxoteas- terone / 6-deoxo- typhasterol |
[68] |
CYP90G1v1 | 85 | 90 | Veratrum californicum | KJ869258 | steroid |
22R-hydroxy-
cholesterol / 22,26-di- hydroxycholes- terol / 22-hydroxy-26- aminocholes- terol |
C22 hydroxylation |
22-keto-
cholesterol / 22-keto-26- hydroxy- cholesterol / verazine |
[64] |
CYP90G1v2 | 85 | 90 | Veratrum californicum | KJ869261 | steroid |
22R-hydroxy-
cholesterol / 22,26-di- hydroxycholes- terol / 22-hydroxy-26- aminocholes- terol |
C22 hydroxylation |
22-keto-
cholesterol / 22-keto-26- hydroxy- cholesterol / verazine |
[64] |
CYP90G1v3 | 85 | 90 | Veratrum californicum | KJ869260 | steroid |
22R-hydroxy-
cholesterol / 22,26-di- hydroxycholes- terol / 22-hydroxy-26- aminocholes- terol |
C22 hydroxylation |
22-keto-
cholesterol / 22-keto-26- hydroxy- cholesterol / verazine |
[64] |
CYP90G4 | 85 | 90 | Paris polyphylla | MK636702 | steroid |
22R-hydroxy-
cholesterol |
C16 oxidation |
16S,22R-
dihydroxy- cholesterol |
[66] |
CYP90G6 | 85 | 90 |
Dioscorea
zingi- berensis |
MN829442 | steroid |
22R-hydroxy-
cholesterol |
C16 oxidation |
16S,22R-
dihydroxy- cholesterol |
[66] |
CYP708A15 | 85 | 708 | Iberis amara | MW514550 | tetracyclic triterpenoid |
16β-hydroxy-
cucurbitadienol |
C22 hydroxylation |
16β,22-
dihydroxy- cucurbita- dienol |
[69] |
CYP708A15v2 | 85 | 708 | Iberis amara | MW514551 | tetracyclic triterpenoid |
16β-hydroxy-
cucurbitadienol |
C22 hydroxylation |
16β,22-
dihydroxy- cucurbita- dienol |
[69] |
CYP708A16 | 85 | 708 | Iberis amara | MW514556 | tetracyclic triterpenoid | cucurbitadienol | C16 hydroxylation |
16β-hydroxy-
cucurbita- dienol |
[69] |
CYP708A2 | 85 | 708 | Arabidopsis thaliana | NM_001344756.1 | tricyclic triterpenoid | thalianol | C7β hydroxylation |
7β-hydroxy-
thalianol |
[41] |
CYP716A1 | 85 | 716 | Arabidopsis thaliana | NM_123002.2 | pentacyclic ursane / oleanane / lupane |
α-amyrin /
β-amyrin / lupeol |
C28 oxidation |
ursolic acid /
oleanolic acid / betulin |
[70] |
CYP716A2 | 85 | 716 | Arabidopsis thaliana | LC106013.1 | pentacyclic ursane / oleanane / lupane |
α-amyrin /
β-amyrin / lupeol |
C16/C22α/
C28 hydroxylation |
uvaol /
C22α- hydroxy-β- amyrin / erythrodiol / betulin |
[70] |
CYP716A12 | 85 | 716 | Medicago truncatula | FN995113 | pentacyclic ursane / oleanane / lupane |
α-amyrin /
β-amyrin / betulin |
C28 oxidation |
ursolic acid /
oleanolic acid / betulinic acid |
[71] |
CYP716A14v2 | 85 | 716 | Artemisia annua | KF309251 | pentacyclic ursane / oleanane |
α-amyrin /
β-amyrin |
C3 oxidation |
α-amyrone /
β-amyrone |
[72] |
CYP716A15 | 85 | 716 | Vitis vinifera | AB619802 | pentacyclic ursane / oleanane / lupane |
α-amyrin /
β-amyrin / betulin |
C28 oxidation |
ursolic acid /
oleanolic acid / betulinic acid |
[73] |
CYP716A17 | 85 | 716 | Vitis vinifera | AB619803 | pentacyclic oleanane | β-amyrin | C28 oxidation | oleanolic acid | [73] |
CYP716A44 | 85 | 716 |
Solanum
lycoper- sicum |
XM_004239248.4 | pentacyclic ursane / oleanane |
α-amyrin /
β-amyrin |
C28 oxidation |
ursolic acid /
oleanolic acid |
[74] |
CYP716A46 | 85 | 716 |
Solanum
lycoper- sicum |
XM_004243858 | pentacyclic ursane / oleanane |
α-amyrin /
β-amyrin |
C28 oxidation |
ursolic acid /
oleanolic acid |
[74] |
CYP716A51 | 85 | 716 | Lotus japonicus | AB706297 | pentacyclic ursane / oleanane / lupane |
α-amyrin /
β-amyrin / lupeol |
C28 oxidation |
ursolic acid /
oleanolic acid / betulinic acid |
[75] |
CYP716A52v2 | 85 | 716 | Panax ginseng | JX036032 | pentacyclic oleanane | β-amyrin | C28 oxidation | oleanolic acid | [76] |
CYP716A75 | 85 | 716 | Maesa lanceolata | KF318733 | pentacyclic oleanane | β-amyrin | C28 oxidation | oleanolic acid | [59] |
CYP716A78 | 85 | 716 |
Cheno-
podium quinoa |
KX343075 | pentacyclic oleanane | β-amyrin | C28 oxidation | oleanolic acid | [77] |
CYP716A79 | 85 | 716 |
Cheno-
podium quinoa |
KX343076 | pentacyclic oleanane | β-amyrin | C28 oxidation | oleanolic acid | [77] |
CYP716A80 | 85 | 716 | Barbarea vulgaris | KP795926 | pentacyclic ursane / oleanane / lupane |
α-amyrin /
β-amyrin / lupeol |
C28 oxidation |
ursolic acid /
oleanolic acid / betulinic acid |
[78] |
CYP716A81 | 85 | 716 | Barbarea vulgaris | KP795925 | pentacyclic ursane / oleanane / lupane |
α-amyrin /
β-amyrin / lupeol |
C28 oxidation |
ursolic acid /
oleanolic acid / betulinic acid |
[78] |
CYP716A83 | 85 | 716 | Centella asiatica | KU878849 | pentacyclic ursane / oleanane |
α-amyrin /
β-amyrin |
C28 oxidation |
ursolic acid /
oleanolic acid |
[79] |
CYP716A86 | 85 | 716 | Centella asiatica | KU878848 | pentacyclic oleanane | β-amyrin | C28 oxidation | oleanolic acid | [79] |
CYP716A94 | 85 | 716 | Kalopanax septemlobus | KT150521 | pentacyclic oleanane | β-amyrin | C28 oxidation | oleanolic acid | [50] |
CYP716A110 | 85 | 716 | Aquilegia coerulea | KU878864 | pentacyclic oleanane | β-amyrin | C28 oxidation | oleanolic acid | [79] |
CYP716A111 | 85 | 716 | Aquilegia coerulea | KY047600 | pentacyclic oleanane | β-amyrin | C16β hydroxylation |
16β-hydroxy-
β-amyrin |
[79] |
CYP716A113 | 85 | 716 | Aquilegia coerulea | KU878866 | tetracyclic triterpenoid | cycloartenol |
unknown regio-
selectivity |
hydroxy-
cyclo- artenol, performs non- specific reaction of endogenous yeast compounds |
[79] |
CYP716A140 | 85 | 716 | Platycodon grandiflorus | KU878853 | pentacyclic oleanane / ursane |
β-amyrin /
16β-hydroxy- β-amyrin / 12,13α-epoxy- β-amyrin |
C28 oxidation |
oleanolic
acid / 16β-hydroxy- oleanolic acid |
[79] |
CYP716A140v2 | 85 | 716 | Platycodon grandiflorus | LC209199 | pentacyclic oleanane | β-amyrin | C28 oxidation | oleanolic acid | [80] |
CYP716A141 | 85 | 716 | Platycodon grandiflorus | KU878855 | pentacyclic oleanane |
β-amyrin /
oleanolic acid |
C28 oxidation / C16β hydroxylation |
oleanolic
acid / 16β-hydroxy- oleanolic acid |
[79,80] |
CYP716A154 | 85 | 716 |
Catharan-
thus roseus |
JN565975 | pentacyclic ursane / oleanane / lupane |
α-amyrin /
β-amyrin / betulin |
C28 oxidation |
ursolic acid /
oleanolic acid / betulinic acid |
[81] |
CYP716A155 | 85 | 716 | Rosmarinus officinalis | MK592859 | pentacyclic lupane | lupeol | C28 oxidation | betulinic acid | [82] |
CYP716A175 | 85 | 716 | Malus domestica | XM_008392874 | pentacyclic ursane / oleanane / lupane |
α-amyrin /
β-amyrin / lupeol / germanicol |
C28 oxidation |
ursolic acid /
oleanolic acid / betulinic acid / morolic acid |
[83] |
CYP716A179 | 85 | 716 | Glycyrrhiza uralensis | LC157867 | pentacyclic ursane / oleanane / lupane |
α-amyrin /
β-amyrin / betulin |
C28 oxidation / C22α hydroxylation |
ursolic acid /
C22α- hydroxy- amyrin / oleanolic aicd / betulinic acid |
[84] |
CYP716A180 | 85 | 716 | Betula platyphylla | KJ452328 | pentacyclic lupane | lupeol | C28 oxidation | betulinic acid | [85] |
CYP716A210 / IaAO1 | 85 | 716 | Ilex asprella | MK994507 | pentacyclic ursane / oleanane |
α-amyrin /
β-amyrin |
C28 oxidation |
ursolic acid /
oleanolic acid |
[86] |
CYP716A244 | 85 | 716 |
Eleuthero-
coccus senticosus |
KX354739 | pentacyclic oleanane | β-amyrin | C28 oxidation | oleanolic acid | [87] |
CYP716A252 | 85 | 716 | Ocimum basilicum | JQ958967 | pentacyclic ursane / oleanane |
α-amyrin /
β-amyrin |
C28 oxidation |
ursolic acid /
oleanolic acid |
[88] |
CYP716A253 | 85 | 716 | Ocimum basilicum | JQ958968 | pentacyclic ursane / oleanane |
α-amyrin /
β-amyrin |
C28 oxidation |
ursolic acid /
oleanolic acid |
[88] |
CYP716A265 | 85 | 716 |
Lager-
stroemia speciosa |
MG708187 | pentacyclic ursane / oleanane / lupane |
α-amyrin /
β-amyrin / lupeol |
C28 oxidation |
ursolic acid /
oleanolic acid / betulinic acid |
[89] |
CYP716A266 | 85 | 716 |
Lager-
stroemia speciosa |
MG708188 | pentacyclic ursane / oleanane / lupane |
α-amyrin /
β-amyrin / lupeol |
C28 oxidation |
ursolic acid /
oleanolic acid / betulinic acid |
[89] |
CYP716C11 | 85 | 716 | Centella asiatica | KU878852 | pentacyclic oleanane / ursane |
oleanolic acid /
ursolic acid / 6β-hydroxy- oleanolic acid |
C2α hydroxylation |
maslinic
acid / 2α-hydroxy- ursolic acid / 6β-hydroxy- maslinic acid |
[79] |
CYP716C49 | 85 | 716 | Crataegus pinnatifida | MF120282 | pentacyclic oleanane / ursane / lupane |
oleanolic acid /
ursolic acid / betulinic acid |
C2α hydroxylation |
maslinic
acid / corosolic acid / alphitolic acid |
[54] |
CYP716C55 | 85 | 716 |
Lager-
stroemia speciosa |
MG708191 | pentacyclic ursane / oleanane |
ursolic acid /
oleanolic acid |
C2α hydroxylation |
corosolic
acid / maslinic acid |
[89] |
CYP716E26 | 85 | 716 |
Solanum lycoper-
sicum |
XM_004241773 | pentacyclic ursane / oleanane |
α-amyrin /
β-amyrin |
C6β hydroxylation |
6β-hydroxy-
α-amyrin / daturadiol |
[74] |
CYP716E41 | 85 | 716 | Centella asiatica | KU878851 | pentacyclic oleanane / ursane |
oleanolic acid /
ursolic acid / maslinic acid |
C6β hydroxylation |
6β-hydroxy-
oleanolic acid / 6β-hydroxy- ursolic acid / 6β-hydroxy- maslinic acid |
[79] |
CYP716S1 | 85 | 716 | Panax ginseng | JX036031 | tetracyclic triterpene | protopanaxadiol | C6 hydroxylation |
protopanaxa-
triol |
[76] |
CYP716S5 | 85 | 716 | Platycodon grandiflorus | KU878856 | pentacyclic oleanane |
β-amyrin /
oleanolic acid |
C12-C13α epoxidation |
C12-C13α-
epoxy-β- amyrin / C12-C13α- epoxy- oleanolic acid |
[79] |
CYP716U1 | 85 | 716 | Panax ginseng | JN604536 | tetracyclic triterpene |
dammarene-
diol-II |
C12 hydroxylation |
protopanaxa-
diol |
[76] |
CYP716Y1 | 85 | 716 | Bupleurum falcatum | KC963423 | pentacyclic ursane / oleanane |
α-amyrin /
β-amyrin |
C16α hydroxylation |
16α-hydroxy-
α-amyrin / 16α-hydroxy- β-amyrin |
[38] |
IaAO2 | 85 | 716 | Ilex asprella | OL604227 | pentacyclic ursane / oleanane |
α-amyrin /
β-amyrin |
C28 oxidation |
ursolic acid /
oleanolic acid |
[36] |
CYP724A1 | 85 | 724 | Arabidopsis thaliana | NM_001343334.1 | steroid | possibly brassinosteroids | C22 hydroxylation | [90] | |
CYP724B1 | 85 | 724 | Oryza sativa | AB158759 | steroid |
campesterol /
campestanol |
C22 hydroxylation |
22S-hydroxy-
campesterol / 6-deoxo- cathasterone |
[62] |
CYP724B2 | 85 | 724 |
Solanum
lycoper- sicum |
XM_004243170 | steroid |
campesterol /
24R-ergost-4- en-3-one / 24R-5α-ergos- tan-3-one / campestanol |
C22 hydroxylation |
22-hydroxy-
campesterol / 22S-hydroxy- 24R-ergost- 4-en-3-one / 22S-hydroxy- 24R-5α- ergostan- 3-one / 6-deoxo- cathasterone |
[63] |
CYP94D108 | 86 | 94 | Paris polyphylla | MK636703 | steroid |
16S-hydroxy-
22-oxo- cholesterol |
C27 hydroxy-
lation / spiro- ketalisation |
diosgenin | [35] |
CYP94D109 | 86 | 94 | Paris polyphylla | MK636704 | steroid |
16S-hydroxy-
22-oxo- cholesterol |
C27 hydroxy-
lation / spiro- ketalisation |
diosgenin | [35] |
CYP94N1 | 86 | 94 | Veratrum californicum | KJ869255 | steroid |
22R-hydroxy-
cholesterol |
C26 hydroxylation |
22,26-di-
hydroxy- cholesterol and 22-hydroxy- cholesterol- 26-al |
[64] |
CYP710A1 | 710 | 710 | Arabidopsis thaliana | AB219423 | steroid | β-sitosterol | C22 desaturation | stigmasterol | [91] |
CYP710A2 | 710 | 710 | Arabidopsis thaliana | AB233425 | steroid |
β-sitosterol /
24-epi- campesterol |
C22 desaturation |
stigmasterol/
brassicaster- ol |
[91] |
CYP710A4 | 710 | 710 | Arabidopsis thaliana | NM_128444.2 | steroid | β-sitosterol | C22 desaturation | stigmasterol | [91] |
CYP710A11 | 710 | 710 |
Solanum
lycoper- sicum |
NM_001247585.2 | steroid | β-sitosterol | C22 desaturation | stigmasterol | [91] |
Probably the most well-known example of a triterpenoid-biased CYP family are the CYP716s (part of the CYP85 clan) [79], but also other families of the CYP85 clan such as CYP87, CYP85, or CYP90 contain mostly triterpene-modifying CYPs to date. The small clans CYP51 and CYP710 are other important examples of groups with a high preference for triterpenoid substrates. The highly diverse CYP71 clan, in contrast, only contains a few triterpene-modifying CYPs, particularly in the families CYP93, CYP712 and CYP705. The CYP72 family (CYP72 clan) also contains several known representatives. In other clans, however, not a single triterpene-modifying CYP has been identified so far, for example CYP97, CYP74, or CYP711.
The discovery of biosynthetic genes in plants often involves the screening of large pools of gene candidates derived from sequencing studies [93-96]. Hence, efficient approaches are needed to select the most promising gene candidates, particularly for large gene families such as CYPs. Our summarised phylogenetic distribution of known triterpenoid-modifying CYPs therefore might facilitate the discovery of new CYPs in triterpenoid and steroid pathways in plants by highlighting CYP families with a known propensity to participate in these pathways.
Major reaction types of triterpenoid- and steroid-modifying CYPs
The basic polycyclic skeletons of triterpenoids and steroids are created by oxidosqualene cyclases (OSCs) from the universal substrate 2,3-oxidosqualene [5]. As different folding modes (chair–boat–chair vs chair–chair–chair) and different ring sizes can occur during this cyclisation cascade, resulting triterpene and sterol scaffolds have drastically different three-dimensional shapes. For this reason, CYPs are typically specific to a certain group of triterpenoid scaffolds. Hence, we summarised our list of 149 triterpenoid/steroid CYPs (Table 1) according to their target scaffold.
Figure 3 covers plant CYPs acting on steroid, cucurbitacin, or simple tetracyclic triterpenoid scaffolds. Important scaffolds here are campesterol (1), β-sitosterol (2), cholesterol (3), cucurbitadienol (4), and dammarenediol-II (5). Not surprisingly, CYPs involved in the biosynthesis of essential sterols in plants are highly conserved and play a crucial role in their growth and development. For example, members of the CYP710A subfamily were characterised as C22 desaturases in Arabidopsis and tomato [91,97]. Three CYPs, CYP710A1, CYP710A2 and CYP710A4 were identified in Arabidopsis and CYP710A11 was identified in tomato. All four CYPs could produce stigmasterol from β-sitosterol (2) in enzyme assays performed in vitro. However, Arabidopsis CYP710A2 showed substrate flexibility towards campesterol (1) epimers and could also produce brassicasterol from 24-epicampesterol in vitro. Enzymes of the CYP51G subfamily (CYP51 clan) function as sterol 14α-demethylases in green plants [24,25,98]. These enzymes catalyse oxidation of the C14α methyl group to trigger elimination of formic acid [24,25]. The sister subfamily CYP51H, on the other hand, is only found in monocots. AsCYP51H10 from Avena sativa (oat) is a multifunctional CYP that performs hydroxylation and epoxidation reactions of the β-amyrin (6) scaffold to produce 12,13β-epoxy-16β-hydroxy-β-amyrin [1,99]. Thus, CYP51H10 is an example of a neofunctionalised CYP recruited from primary sterol metabolism.
Two members of the CYP87D subfamily decorate the tetracyclic scaffold in plants from the Cucurbitaceae family (Figure 3B). CYP87D18 (CYP85 clan) was identified as a multifunctional C11 oxidase involved in the biosynthetic pathway of mogrosides. Mogrosides, isolated from ripe fruits of Siraitia grosvenorii (Cucurbitaceae) are glycosylated triterpenoid saponins with rare C24 and C25 hydroxylation [100]. Based on feeding assays in yeast it was found that CYP87D18 catalyses a two-step sequential C11 oxidation of cucurbitadienol (4) to 11-hydroxycucurbitadienol and 11-oxo-cucurbitadienol [101]. CYP87D18 also catalysed C11 hydroxylation of trans-24,25-dihydroxycucurbitadienol to form trihydroxylated mogrol in yeast [102].
CYPs acting on pentacyclic 6-6-6-6-6 triterpenes, which include the extremely important and widespread scaffolds β-amyrin (6), α-amyrin (7), and friedelin (8), are summarised in Figure 4. Of particular relevance in this area is the CYP716 family, which plays a central role in the diversification of triterpenoids in eudicots [79]. Members of the CYP716A subfamily were mostly identified as C28 oxidases that catalyse three-step oxidation of α-amyrin (7), β-amyrin (6) and lupeol (10) to ursolic acid, oleanolic acid, and betulinic acid, respectively [71,73]. Nonetheless, other CYP716 enzymes have evolved to perform a wider range of modifications of triterpenoids; several CYP716 enzymes were found to catalyse C3 oxidation of α-amyrin (7) and β-amyrin (6), C16α oxidation of β-amyrin (6), or C22α oxidation of α-amyrin (7) [40,72,79]. Some members even act on triterpenoid scaffolds other than the 6-6-6-6-6 pentacyclic triterpenes. For example, two CYP716 enzymes from Panax ginseng act on tetracyclic scaffolds; CYP716U1 hydroxylates dammarenediol-II (5) to protopanaxadiol, and CYP716S1 hydroxylates the C6 of protopanaxadiol to form protopanaxatriol [76,103]. CYP716A113v1 from Aquilegia coerulea hydroxylates cycloartenol with unknown regiospecificity when expressed in a yeast strain harbouring a tomato cycloartenol synthase gene [79].
CYP712 family members (clan 71) were first identified in the biosynthetic pathway of nor-triterpenoid celastrol, a potent anti-obesity metabolite [42,43]. In two independent studies, transcriptome mining and functional studies in Nicotiana benthamiana were used to identify the CYPs CYP712K1, CYP712K2, CYP712K3, and CYP712K4 capable of oxidising friedelin (8) into polpunonic acid via an aldehyde intermediate [42,43].
Members of the CYP93E subfamily are restricted to legumes and are involved in the biosynthesis of triterpenoid saponins. So far, nine CYP93E members were identified from different legume species [37,40]. All of these perform C24 hydroxylation of β-amyrin (6) to form 24-hydroxy-β-amyrin. CYP93E1 also catalyses the conversion of sophoradiol to soyasapogenol B [37,40,46]. Members of other CYP93 subfamilies (CYP93A, B, C and G) are ubiquitous in flowering plants and are mostly involved in flavonoid biosynthesis [25,26].
Lastly, CYPs acting on either pentacyclic 6-6-6-6-5 scaffolds, such as isoarborinol (9) or lupeol (10), or on unusual triterpene scaffolds such as arabidiol (11) or thalianol (12) are grouped in Figure 5. Enzymes from the CYP705 and CYP708 family catalyse Brassicaceae-specific reactions. The corresponding genes were found in operon-like gene clusters and catalyse the modification of monocyclic marnerol and tricyclic thalianol (12) in Arabidopsis [27,41]. Marneral synthase (MRN1) produces two oxidation products, one is marneral (aldehyde) and the other marnerol (alcohol). Arabidopsis CYP71A16 hydroxylates the allylic methyl side-chain of monocyclic marneral/marnerol to 23-hydroxymarneral/23-hydroxymarnerol. Modification of thalianol (12) involves CYPs from two clans. Genes encoding CYP708A2 (clan 85) and CYP705A5 (clan 71) are physically clustered with the thalianol synthase (THAS) gene, encoding the corresponding oxidosqualene cyclase. CYP708A2 oxidises the tricyclic thalianol (12) scaffold to 7β-hydroxythalianol, while CYP705A5 is a desaturase and introduces a double bond at C15 [41]. The related Arabidopsis CYP705A1 (also from clan 71) accepts a slightly different scaffold, arabidiol (11), triggering cleavage of the side chain at the same C15 instead of dehydrogenation. This shows that even closely related CYPs from the same subfamily can exhibit distinct differences in their substrate and reaction profiles.
Recent examples of triterpenoid and steroid cytochrome P450 monooxygenases
In this last section, we will illustrate selected examples that showcase the enzymatic versatility of CYPs in plant triterpenoid and steroid metabolism (Figure 6).
Diosgenin (13) is a specialised plant natural product with a unique 5,6-spiroketal moiety that serves as an inexpensive raw material for the industrial synthesis of steroidal drugs. Diosgenin (13) biosynthesis from cholesterol (3) was explored in Paris polyphylla (Pp; monocot), Trigonella foenum-graecum (Tf; dicot) and Dioscorea zingiberensis (Dz; monocot) (Figure 6A) [35,66]. Multifunctional CYPs PpCYP90G4/TfCYP90B50 were independently recruited from the ancient CYP90B subfamily involved in brassinosteroid biosynthesis to catalyse the initial C22,16 dihydroxylation of cholesterol (3) [35]; in contrast, the related CYP DzCYP90B71 was found to catalyse only the first hydroxylation at C22 [66]. This step is followed by a rate-limiting cyclisation step through unstable furostanol intermediate 14 that involves CYP-catalysed oxidative ring closure, leading to a hemiketal bridge between C16 and C22. Following these initial hydroxylations, CYPs from multiple families catalyse end-of-chain hydroxylation at C27 which is followed by spontaneous spiroketalisation to form diosgenin (13). The CYP pairs PpCYP90G4-PpCYP94D108 in P. polyphylla and TfCYP90B50-TfCYP82J17 in T. foenum-graecum resulted in the highest diosgenin (13) production. Diosgenin (13) biosynthesis in distantly related plants is an example of catalytic plasticity embedded within the ancient CYP90Bs. Especially CYPs from large families often show high substrate promiscuity which facilitates duplication events resulting in neofunctionalisation [15].
Ellarinacin (15) is a defence-related arborinane-type triterpenoid that was recently discovered in bread wheat (Triticum aestivum) by genome mining (Figure 6B) [26]. The ellarinacin gene cluster encodes the three CYP enzymes TaCYP51H35, TaCYP51H37 and TaCYP51H13P, with the latter carrying a premature stop codon. TaCYP51H35 catalyses the C19-hydroxylation of isoarborinol (9) to form 19-hydroxyisoarborinol (16), which is oxidised to ketone 17 by a dehydrogenase (TaHID). TaCYP51H37 then carries out a remarkable double oxidation at the methyl group C25 as well as C2, leading to the highly unusual acetal-epoxide proposed for ellarinacin (15). This work therefore not only represents an important example how a CYP51H evolved by gene duplication and neofunctionalisation from a sterol biosynthetic gene, but also demonstrates the capacity of CYPs to catalyse unique enzymatic cascades.
Limonoids are highly oxidised, modified and truncated triterpenoids; one of the most well-known limonoids is the eponymous compound limonin (18), which contributes to the bitter taste of citrus products (Figure 6C) [104]. The first steps of limonoid biosynthesis were recently explored by functional characterisation in heterologous hosts [29,105-107]. There, CYP enzymes MaCYP71CD2 and MaCYP71BQ5 from Melia azedarach initiate the ring formation on the side chain of the triterpene precursor tirucalla-7,24-dien-3β-ol (19) in a sequential manner. MaCYP71CD2 is a bifunctional CYP that hydroxylates C23 and additionally introduces a C24–C25 epoxide on the side chain of tirucalla-7,24-dien-3β-ol (19), yielding dihydroniloticin (20). MaCYP71BQ5 then oxidises the methyl group C21 to a formyl group, leading to spontaneous hemiacetal ring formation in the product melianol (21). It is believed that these transformations are the starting point for formation of the characteristic furan ring of limonoids [29].
Taken together, these case studies not only represent impressive examples how CYPs create chemical complexity in plant triterpenoid and steroid metabolism, but also illustrate state-of-the-art approaches to discover and characterise new CYPs by genome mining, co-expression analyses, and efficient heterologous expression systems.
Conclusion
In this review, we provided a comprehensive overview over the phylogenetic distribution and diverse metabolic reactions catalysed by CYPs involved in the tailoring of triterpenoids and steroids from plants, covering 149 CYPs that have been functionally characterised to date (Table 1). Considering that up to 1% of all plant genes encode CYPs and that triterpenoids are one of the largest natural product classes in plants, we expect that this number will rise quickly in years to come. Several of our examples highlight the substrate promiscuity embedded within ancient CYP families, which enables rapid functional extension to acquire unique catalytic functions during duplication events [15,26,79]. The increasing availability of high-quality transcriptome and genome data even of non-model plants together with reliable and efficient expression systems in yeast and in Nicotiana benthamiana will facilitate future approaches to fully harness the diversity of triterpenoids and steroids found in plants. In combination with ground-breaking machine learning approaches for protein structure prediction such as AlphaFold2 [108], we anticipate that the catalytic repertoire of CYPs will be exploited much more for the biotechnological production of tailor-made triterpenoids and steroids in the near future. We hope that our review provides a good starting point for such further studies.
Acknowledgements
We thank the entire Franke group for helpful discussions. The graphical abstract was created with BioRender.com. This content is not subject to CC BY 4.0.
Funding
We gratefully acknowledge financial support by the Emmy Noether programme of the Deutsche Forschungsgemeinschaft (FR 3720/3-1) and the SMART BIOTECS alliance between the Technische Universität Braunschweig and the Leibniz Universität Hannover, supported by the Ministry of Science and Culture (MWK) of Lower Saxony.
References
-
Qi, X.; Bakht, S.; Qin, B.; Leggett, M.; Hemmings, A.; Mellon, F.; Eagles, J.; Werck-Reichhart, D.; Schaller, H.; Lesot, A.; Melton, R.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 18848–18853. doi:10.1073/pnas.0607849103
Return to citation in text: [1] [2] [3] -
Kitagawa, I. Pure Appl. Chem. 2002, 74, 1189–1198. doi:10.1351/pac200274071189
Return to citation in text: [1] -
Zhang, M.; Sun, X.; Ren, R.; Su, L.; Xu, M.; Zheng, L.; Li, H. Phytochem. Lett. 2022, 49, 145–151. doi:10.1016/j.phytol.2022.03.020
Return to citation in text: [1] -
Xiong, J.; Kashiwada, Y.; Chen, C.-H.; Qian, K.; Morris-Natschke, S. L.; Lee, K.-H.; Takaishi, Y. Bioorg. Med. Chem. 2010, 18, 6451–6469. doi:10.1016/j.bmc.2010.06.092
Return to citation in text: [1] -
Thimmappa, R.; Geisler, K.; Louveau, T.; O'Maille, P.; Osbourn, A. Annu. Rev. Plant Biol. 2014, 65, 225–257. doi:10.1146/annurev-arplant-050312-120229
Return to citation in text: [1] [2] -
Nelson, D.; Werck-Reichhart, D. Plant J. 2011, 66, 194–211. doi:10.1111/j.1365-313x.2011.04529.x
Return to citation in text: [1] [2] -
Ghosh, S. Front. Plant Sci. 2017, 8, 1886. doi:10.3389/fpls.2017.01886
Return to citation in text: [1] [2] -
Nguyen, T.-D.; Dang, T.-T. T. Front. Plant Sci. 2021, 12, 682181. doi:10.3389/fpls.2021.682181
Return to citation in text: [1] [2] -
Bathe, U.; Tissier, A. Phytochemistry 2019, 161, 149–162. doi:10.1016/j.phytochem.2018.12.003
Return to citation in text: [1] -
Zhang, Y.; Ma, L.; Su, P.; Huang, L.; Gao, W. Crit. Rev. Biotechnol. 2021, 1–21. doi:10.1080/07388551.2021.2003292
Return to citation in text: [1] -
Mizutani, M.; Sato, F. Arch. Biochem. Biophys. 2011, 507, 194–203. doi:10.1016/j.abb.2010.09.026
Return to citation in text: [1] [2] -
Miettinen, K.; Iñigo, S.; Kreft, L.; Pollier, J.; De Bo, C.; Botzki, A.; Coppens, F.; Bak, S.; Goossens, A. Nucleic Acids Res. 2018, 46, D586–D594. doi:10.1093/nar/gkx925
Return to citation in text: [1] -
Shang, Y.; Huang, S. Plant J. 2019, 97, 101–111. doi:10.1111/tpj.14132
Return to citation in text: [1] -
Bak, S.; Beisson, F.; Bishop, G.; Hamberger, B.; Höfer, R.; Paquette, S.; Werck-Reichhart, D. Arabidopsis Book 2011, 9, e0144. doi:10.1199/tab.0144
Return to citation in text: [1] -
Hansen, C. C.; Nelson, D. R.; Møller, B. L.; Werck-Reichhart, D. Mol. Plant 2021, 14, 1244–1265. doi:10.1016/j.molp.2021.06.028
Return to citation in text: [1] [2] [3] [4] -
Nelson, D. R. Cytochrome P450 Nomenclature, 2004. In Cytochrome P450 Protocols; Phillips, I. R.; Shephard, E. A., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2006; pp 1–10. doi:10.1385/1-59259-998-2:1
Return to citation in text: [1] -
Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947–3980. doi:10.1021/cr020443g
Return to citation in text: [1] [2] [3] -
Poulos, T. L. Chem. Rev. 2014, 114, 3919–3962. doi:10.1021/cr400415k
Return to citation in text: [1] [2] -
Guengerich, F. P. ACS Catal. 2018, 8, 10964–10976. doi:10.1021/acscatal.8b03401
Return to citation in text: [1] -
Rittle, J.; Green, M. T. Science 2010, 330, 933–937. doi:10.1126/science.1193478
Return to citation in text: [1] -
Dubey, K. D.; Shaik, S. Acc. Chem. Res. 2019, 52, 389–399. doi:10.1021/acs.accounts.8b00467
Return to citation in text: [1] -
Chen, C.-C.; Min, J.; Zhang, L.; Yang, Y.; Yu, X.; Guo, R.-T. ChemBioChem 2021, 22, 1317–1328. doi:10.1002/cbic.202000705
Return to citation in text: [1] -
Ortiz de Montellano, P. R. Substrate Oxidation by Cytochrome P450 Enzyme. In Cytochrome P450: Structure, Mechanism, and Biochemistry; Ortiz de Montellano, P. R., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp 111–176. doi:10.1007/978-3-319-12108-6_4
Return to citation in text: [1] -
Bak, S.; Kahn, R. A.; Olsen, C. E.; Halkier, B. A. Plant J. 1997, 11, 191–201. doi:10.1046/j.1365-313x.1997.11020191.x
Return to citation in text: [1] [2] [3] -
Kushiro, M.; Nakano, T.; Sato, K.; Yamagishi, K.; Asami, T.; Nakano, A.; Takatsuto, S.; Fujioka, S.; Ebizuka, Y.; Yoshida, S. Biochem. Biophys. Res. Commun. 2001, 285, 98–104. doi:10.1006/bbrc.2001.5122
Return to citation in text: [1] [2] [3] [4] -
Polturak, G.; Dippe, M.; Stephenson, M. J.; Chandra Misra, R.; Owen, C.; Ramirez-Gonzalez, R. H.; Haidoulis, J. F.; Schoonbeek, H.-J.; Chartrain, L.; Borrill, P.; Nelson, D. R.; Brown, J. K. M.; Nicholson, P.; Uauy, C.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2123299119. doi:10.1073/pnas.2123299119
Return to citation in text: [1] [2] [3] [4] [5] [6] [7] [8] [9] -
Field, B.; Fiston-Lavier, A.-S.; Kemen, A.; Geisler, K.; Quesneville, H.; Osbourn, A. E. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 16116–16121. doi:10.1073/pnas.1109273108
Return to citation in text: [1] [2] -
Castillo, D. A.; Kolesnikova, M. D.; Matsuda, S. P. T. J. Am. Chem. Soc. 2013, 135, 5885–5894. doi:10.1021/ja401535g
Return to citation in text: [1] [2] -
Hodgson, H.; De La Peña, R.; Stephenson, M. J.; Thimmappa, R.; Vincent, J. L.; Sattely, E. S.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 17096–17104. doi:10.1073/pnas.1906083116
Return to citation in text: [1] [2] [3] [4] [5] -
Krokida, A.; Delis, C.; Geisler, K.; Garagounis, C.; Tsikou, D.; Peña‐Rodríguez, L. M.; Katsarou, D.; Field, B.; Osbourn, A. E.; Papadopoulou, K. K. New Phytol. 2013, 200, 675–690. doi:10.1111/nph.12414
Return to citation in text: [1] -
Tsukagoshi, Y.; Ohyama, K.; Seki, H.; Akashi, T.; Muranaka, T.; Suzuki, H.; Fujimoto, Y. Phytochemistry 2016, 127, 23–28. doi:10.1016/j.phytochem.2016.03.010
Return to citation in text: [1] -
Takase, S.; Kera, K.; Nagashima, Y.; Mannen, K.; Hosouchi, T.; Shinpo, S.; Kawashima, M.; Kotake, Y.; Yamada, H.; Saga, Y.; Otaka, J.; Araya, H.; Kotera, M.; Suzuki, H.; Kushiro, T. J. Biol. Chem. 2019, 294, 18662–18673. doi:10.1074/jbc.ra119.009944
Return to citation in text: [1] [2] [3] -
Shang, Y.; Ma, Y.; Zhou, Y.; Zhang, H.; Duan, L.; Chen, H.; Zeng, J.; Zhou, Q.; Wang, S.; Gu, W.; Liu, M.; Ren, J.; Gu, X.; Zhang, S.; Wang, Y.; Yasukawa, K.; Bouwmeester, H. J.; Qi, X.; Zhang, Z.; Lucas, W. J.; Huang, S. Science 2014, 346, 1084–1088. doi:10.1126/science.1259215
Return to citation in text: [1] -
Zhou, Y.; Ma, Y.; Zeng, J.; Duan, L.; Xue, X.; Wang, H.; Lin, T.; Liu, Z.; Zeng, K.; Zhong, Y.; Zhang, S.; Hu, Q.; Liu, M.; Zhang, H.; Reed, J.; Moses, T.; Liu, X.; Huang, P.; Qing, Z.; Liu, X.; Tu, P.; Kuang, H.; Zhang, Z.; Osbourn, A.; Ro, D.-K.; Shang, Y.; Huang, S. Nat. Plants (London, U. K.) 2016, 2, 16183. doi:10.1038/nplants.2016.183
Return to citation in text: [1] [2] [3] [4] -
Christ, B.; Xu, C.; Xu, M.; Li, F.-S.; Wada, N.; Mitchell, A. J.; Han, X.-L.; Wen, M.-L.; Fujita, M.; Weng, J.-K. Nat. Commun. 2019, 10, 3206. doi:10.1038/s41467-019-11286-7
Return to citation in text: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] -
Li, L.; Lin, S.; Chen, Y.; Wang, Y.; Xiao, L.; Ye, X.; Sun, L.; Zhan, R.; Xu, H. Front. Plant Sci. 2022, 13, 831401. doi:10.3389/fpls.2022.831401
Return to citation in text: [1] [2] [3] -
Shibuya, M.; Hoshino, M.; Katsube, Y.; Hayashi, H.; Kushiro, T.; Ebizuka, Y. FEBS J. 2006, 273, 948–959. doi:10.1111/j.1742-4658.2006.05120.x
Return to citation in text: [1] [2] [3] -
Moses, T.; Pollier, J.; Almagro, L.; Buyst, D.; Van Montagu, M.; Pedreño, M. A.; Martins, J. C.; Thevelein, J. M.; Goossens, A. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1634–1639. doi:10.1073/pnas.1323369111
Return to citation in text: [1] [2] -
Seki, H.; Ohyama, K.; Sawai, S.; Mizutani, M.; Ohnishi, T.; Sudo, H.; Akashi, T.; Aoki, T.; Saito, K.; Muranaka, T. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 14204–14209. doi:10.1073/pnas.0803876105
Return to citation in text: [1] [2] -
Moses, T.; Thevelein, J. M.; Goossens, A.; Pollier, J. Phytochemistry 2014, 108, 47–56. doi:10.1016/j.phytochem.2014.10.002
Return to citation in text: [1] [2] [3] [4] [5] [6] [7] [8] [9] -
Field, B.; Osbourn, A. E. Science 2008, 320, 543–547. doi:10.1126/science.1154990
Return to citation in text: [1] [2] [3] [4] -
Hansen, N. L.; Miettinen, K.; Zhao, Y.; Ignea, C.; Andreadelli, A.; Raadam, M. H.; Makris, A. M.; Møller, B. L.; Stærk, D.; Bak, S.; Kampranis, S. C. Microb. Cell Fact. 2020, 19, 15. doi:10.1186/s12934-020-1284-9
Return to citation in text: [1] [2] [3] [4] [5] -
Bicalho, K. U.; Santoni, M. M.; Arendt, P.; Zanelli, C. F.; Furlan, M.; Goossens, A.; Pollier, J. Plant Cell Physiol. 2019, 60, 2510–2522. doi:10.1093/pcp/pcz144
Return to citation in text: [1] [2] [3] -
Fukushima, E. O.; Seki, H.; Sawai, S.; Suzuki, M.; Ohyama, K.; Saito, K.; Muranaka, T. Plant Cell Physiol. 2013, 54, 740–749. doi:10.1093/pcp/pct015
Return to citation in text: [1] [2] [3] -
Fanani, M. Z.; Fukushima, E. O.; Sawai, S.; Tang, J.; Ishimori, M.; Sudo, H.; Ohyama, K.; Seki, H.; Saito, K.; Muranaka, T. Front. Plant Sci. 2019, 10, 1520. doi:10.3389/fpls.2019.01520
Return to citation in text: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] -
Seki, H.; Sawai, S.; Ohyama, K.; Mizutani, M.; Ohnishi, T.; Sudo, H.; Fukushima, E. O.; Akashi, T.; Aoki, T.; Saito, K.; Muranaka, T. Plant Cell 2011, 23, 4112–4123. doi:10.1105/tpc.110.082685
Return to citation in text: [1] [2] [3] -
Biazzi, E.; Carelli, M.; Tava, A.; Abbruscato, P.; Losini, I.; Avato, P.; Scotti, C.; Calderini, O. Mol. Plant 2015, 8, 1493–1506. doi:10.1016/j.molp.2015.06.003
Return to citation in text: [1] -
Tzin, V.; Snyder, J. H.; Yang, D. S.; Huhman, D. V.; Watson, B. S.; Allen, S. N.; Tang, Y.; Miettinen, K.; Arendt, P.; Pollier, J.; Goossens, A.; Sumner, L. W. Metabolomics 2019, 15, 85. doi:10.1007/s11306-019-1542-1
Return to citation in text: [1] [2] -
Yano, R.; Takagi, K.; Takada, Y.; Mukaiyama, K.; Tsukamoto, C.; Sayama, T.; Kaga, A.; Anai, T.; Sawai, S.; Ohyama, K.; Saito, K.; Ishimoto, M. Plant J. 2017, 89, 527–539. doi:10.1111/tpj.13403
Return to citation in text: [1] -
Han, J. Y.; Chun, J.-H.; Oh, S. A.; Park, S.-B.; Hwang, H.-S.; Lee, H.; Choi, Y. E. Plant Cell Physiol. 2018, 59, 319–330. doi:10.1093/pcp/pcx188
Return to citation in text: [1] [2] -
Liu, Q.; Khakimov, B.; Cárdenas, P. D.; Cozzi, F.; Olsen, C. E.; Jensen, K. R.; Hauser, T. P.; Bak, S. New Phytol. 2019, 222, 1599–1609. doi:10.1111/nph.15689
Return to citation in text: [1] -
Kim, O. T.; Um, Y.; Jin, M. L.; Kim, J. U.; Hegebarth, D.; Busta, L.; Racovita, R. C.; Jetter, R. Plant Cell Physiol. 2018, 59, 1200–1213. doi:10.1093/pcp/pcy055
Return to citation in text: [1] -
Ohnishi, T.; Nomura, T.; Watanabe, B.; Ohta, D.; Yokota, T.; Miyagawa, H.; Sakata, K.; Mizutani, M. Phytochemistry 2006, 67, 1895–1906. doi:10.1016/j.phytochem.2006.05.042
Return to citation in text: [1] -
Dai, Z.; Liu, Y.; Sun, Z.; Wang, D.; Qu, G.; Ma, X.; Fan, F.; Zhang, L.; Li, S.; Zhang, X. Metab. Eng. 2019, 51, 70–78. doi:10.1016/j.ymben.2018.10.001
Return to citation in text: [1] [2] -
Shimada, Y.; Fujioka, S.; Miyauchi, N.; Kushiro, M.; Takatsuto, S.; Nomura, T.; Yokota, T.; Kamiya, Y.; Bishop, G. J.; Yoshida, S. Plant Physiol. 2001, 126, 770–779. doi:10.1104/pp.126.2.770
Return to citation in text: [1] -
Bishop, G. J.; Nomura, T.; Yokota, T.; Harrison, K.; Noguchi, T.; Fujioka, S.; Takatsuto, S.; Jones, J. D. G.; Kamiya, Y. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 1761–1766. doi:10.1073/pnas.96.4.1761
Return to citation in text: [1] -
Shimada, Y.; Goda, H.; Nakamura, A.; Takatsuto, S.; Fujioka, S.; Yoshida, S. Plant Physiol. 2003, 131, 287–297. doi:10.1104/pp.013029
Return to citation in text: [1] -
Nomura, T.; Kushiro, T.; Yokota, T.; Kamiya, Y.; Bishop, G. J.; Yamaguchi, S. J. Biol. Chem. 2005, 280, 17873–17879. doi:10.1074/jbc.m414592200
Return to citation in text: [1] [2] -
Moses, T.; Pollier, J.; Faizal, A.; Apers, S.; Pieters, L.; Thevelein, J. M.; Geelen, D.; Goossens, A. Mol. Plant 2015, 8, 122–135. doi:10.1016/j.molp.2014.11.004
Return to citation in text: [1] [2] -
Ohnishi, T.; Godza, B.; Watanabe, B.; Fujioka, S.; Hategan, L.; Ide, K.; Shibata, K.; Yokota, T.; Szekeres, M.; Mizutani, M. J. Biol. Chem. 2012, 287, 31551–31560. doi:10.1074/jbc.m112.392720
Return to citation in text: [1] -
Fujita, S.; Ohnishi, T.; Watanabe, B.; Yokota, T.; Takatsuto, S.; Fujioka, S.; Yoshida, S.; Sakata, K.; Mizutani, M. Plant J. 2006, 45, 765–774. doi:10.1111/j.1365-313x.2005.02639.x
Return to citation in text: [1] -
Sakamoto, T.; Morinaka, Y.; Ohnishi, T.; Sunohara, H.; Fujioka, S.; Ueguchi-Tanaka, M.; Mizutani, M.; Sakata, K.; Takatsuto, S.; Yoshida, S.; Tanaka, H.; Kitano, H.; Matsuoka, M. Nat. Biotechnol. 2006, 24, 105–109. doi:10.1038/nbt1173
Return to citation in text: [1] [2] -
Ohnishi, T.; Watanabe, B.; Sakata, K.; Mizutani, M. Biosci., Biotechnol., Biochem. 2006, 70, 2071–2080. doi:10.1271/bbb.60034
Return to citation in text: [1] [2] -
Augustin, M. M.; Ruzicka, D. R.; Shukla, A. K.; Augustin, J. M.; Starks, C. M.; O'Neil‐Johnson, M.; McKain, M. R.; Evans, B. S.; Barrett, M. D.; Smithson, A.; Wong, G. K.-S.; Deyholos, M. K.; Edger, P. P.; Pires, J. C.; Leebens‐Mack, J. H.; Mann, D. A.; Kutchan, T. M. Plant J. 2015, 82, 991–1003. doi:10.1111/tpj.12871
Return to citation in text: [1] [2] [3] [4] [5] -
Yin, Y.; Gao, L.; Zhang, X.; Gao, W. Phytochemistry 2018, 156, 116–123. doi:10.1016/j.phytochem.2018.09.005
Return to citation in text: [1] -
Zhou, C.; Yang, Y.; Tian, J.; Wu, Y.; An, F.; Li, C.; Zhang, Y. Plant J. 2022, 109, 940–951. doi:10.1111/tpj.15604
Return to citation in text: [1] [2] [3] [4] [5] [6] [7] -
Ohnishi, T.; Szatmari, A.-M.; Watanabe, B.; Fujita, S.; Bancos, S.; Koncz, C.; Lafos, M.; Shibata, K.; Yokota, T.; Sakata, K.; Szekeres, M.; Mizutani, M. Plant Cell 2006, 18, 3275–3288. doi:10.1105/tpc.106.045443
Return to citation in text: [1] [2] -
Sakamoto, T.; Ohnishi, T.; Fujioka, S.; Watanabe, B.; Mizutani, M. Plant Physiol. Biochem. 2012, 58, 220–226. doi:10.1016/j.plaphy.2012.07.011
Return to citation in text: [1] [2] -
Dong, L.; Almeida, A.; Pollier, J.; Khakimov, B.; Bassard, J.-E.; Miettinen, K.; Stærk, D.; Mehran, R.; Olsen, C. E.; Motawia, M. S.; Goossens, A.; Bak, S. Mol. Biol. Evol. 2021, 38, 4659–4673. doi:10.1093/molbev/msab213
Return to citation in text: [1] [2] [3] -
Yasumoto, S.; Fukushima, E. O.; Seki, H.; Muranaka, T. FEBS Lett. 2016, 590, 533–540. doi:10.1002/1873-3468.12074
Return to citation in text: [1] [2] -
Carelli, M.; Biazzi, E.; Panara, F.; Tava, A.; Scaramelli, L.; Porceddu, A.; Graham, N.; Odoardi, M.; Piano, E.; Arcioni, S.; May, S.; Scotti, C.; Calderini, O. Plant Cell 2011, 23, 3070–3081. doi:10.1105/tpc.111.087312
Return to citation in text: [1] [2] -
Moses, T.; Pollier, J.; Shen, Q.; Soetaert, S.; Reed, J.; Erffelinck, M.-L.; Van Nieuwerburgh, F. C. W.; Vanden Bossche, R.; Osbourn, A.; Thevelein, J. M.; Deforce, D.; Tang, K.; Goossens, A. Plant Cell 2015, 27, 286–301. doi:10.1105/tpc.114.134486
Return to citation in text: [1] [2] -
Fukushima, E. O.; Seki, H.; Ohyama, K.; Ono, E.; Umemoto, N.; Mizutani, M.; Saito, K.; Muranaka, T. Plant Cell Physiol. 2011, 52, 2050–2061. doi:10.1093/pcp/pcr146
Return to citation in text: [1] [2] [3] -
Yasumoto, S.; Seki, H.; Shimizu, Y.; Fukushima, E. O.; Muranaka, T. Front. Plant Sci. 2017, 8, 21. doi:10.3389/fpls.2017.00021
Return to citation in text: [1] [2] [3] -
Suzuki, H.; Fukushima, E. O.; Shimizu, Y.; Seki, H.; Fujisawa, Y.; Ishimoto, M.; Osakabe, K.; Osakabe, Y.; Muranaka, T. Plant Cell Physiol. 2019, 60, 2496–2509. doi:10.1093/pcp/pcz145
Return to citation in text: [1] -
Han, J.-Y.; Hwang, H.-S.; Choi, S.-W.; Kim, H.-J.; Choi, Y.-E. Plant Cell Physiol. 2012, 53, 1535–1545. doi:10.1093/pcp/pcs106
Return to citation in text: [1] [2] [3] [4] -
Fiallos-Jurado, J.; Pollier, J.; Moses, T.; Arendt, P.; Barriga-Medina, N.; Morillo, E.; Arahana, V.; de Lourdes Torres, M.; Goossens, A.; Leon-Reyes, A. Plant Sci. 2016, 250, 188–197. doi:10.1016/j.plantsci.2016.05.015
Return to citation in text: [1] [2] -
Khakimov, B.; Kuzina, V.; Erthmann, P. Ø.; Fukushima, E. O.; Augustin, J. M.; Olsen, C. E.; Scholtalbers, J.; Volpin, H.; Andersen, S. B.; Hauser, T. P.; Muranaka, T.; Bak, S. Plant J. 2015, 84, 478–490. doi:10.1111/tpj.13012
Return to citation in text: [1] [2] -
Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P. D.; Pauwels, L.; Aharoni, A.; Martins, J.; Nelson, D. R.; Goossens, A. Nat. Commun. 2017, 8, 14153. doi:10.1038/ncomms14153
Return to citation in text: [1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] -
Tamura, K.; Teranishi, Y.; Ueda, S.; Suzuki, H.; Kawano, N.; Yoshimatsu, K.; Saito, K.; Kawahara, N.; Muranaka, T.; Seki, H. Plant Cell Physiol. 2017, 58, 874–884. doi:10.1093/pcp/pcx043
Return to citation in text: [1] [2] -
Huang, L.; Li, J.; Ye, H.; Li, C.; Wang, H.; Liu, B.; Zhang, Y. Planta 2012, 236, 1571–1581. doi:10.1007/s00425-012-1712-0
Return to citation in text: [1] -
Huang, J.; Zha, W.; An, T.; Dong, H.; Huang, Y.; Wang, D.; Yu, R.; Duan, L.; Zhang, X.; Peters, R. J.; Dai, Z.; Zi, J. Appl. Microbiol. Biotechnol. 2019, 103, 7029–7039. doi:10.1007/s00253-019-10004-z
Return to citation in text: [1] -
Andre, C. M.; Legay, S.; Deleruelle, A.; Nieuwenhuizen, N.; Punter, M.; Brendolise, C.; Cooney, J. M.; Lateur, M.; Hausman, J.-F.; Larondelle, Y.; Laing, W. A. New Phytol. 2016, 211, 1279–1294. doi:10.1111/nph.13996
Return to citation in text: [1] -
Tamura, K.; Seki, H.; Suzuki, H.; Kojoma, M.; Saito, K.; Muranaka, T. Plant Cell Rep. 2017, 36, 437–445. doi:10.1007/s00299-016-2092-x
Return to citation in text: [1] -
Zhou, C.; Li, J.; Li, C.; Zhang, Y. BMC Biotechnol. 2016, 16, 59. doi:10.1186/s12896-016-0290-9
Return to citation in text: [1] -
Ji, X.; Lin, S.; Chen, Y.; Liu, J.; Yun, X.; Wang, T.; Qin, J.; Luo, C.; Wang, K.; Zhao, Z.; Zhan, R.; Xu, H. Front. Plant Sci. 2020, 11, 612. doi:10.3389/fpls.2020.00612
Return to citation in text: [1] -
Jo, H.-J.; Han, J. Y.; Hwang, H.-S.; Choi, Y. E. Phytochemistry 2017, 135, 53–63. doi:10.1016/j.phytochem.2016.12.011
Return to citation in text: [1] -
Misra, R. C.; Sharma, S.; Sandeep; Garg, A.; Chanotiya, C. S.; Ghosh, S. New Phytol. 2017, 214, 706–720. doi:10.1111/nph.14412
Return to citation in text: [1] [2] -
Sandeep; Misra, R. C.; Chanotiya, C. S.; Mukhopadhyay, P.; Ghosh, S. New Phytol. 2019, 222, 408–424. doi:10.1111/nph.15606
Return to citation in text: [1] [2] [3] -
Zhang, R.; Xia, X.; Lindsey, K.; da Rocha, P. S. C. F. J. Plant Physiol. 2012, 169, 421–428. doi:10.1016/j.jplph.2011.10.013
Return to citation in text: [1] -
Morikawa, T.; Mizutani, M.; Aoki, N.; Watanabe, B.; Saga, H.; Saito, S.; Oikawa, A.; Suzuki, H.; Sakurai, N.; Shibata, D.; Wadano, A.; Sakata, K.; Ohta, D. Plant Cell 2006, 18, 1008–1022. doi:10.1105/tpc.105.036012
Return to citation in text: [1] [2] [3] [4] [5] -
Edgar, R. C. Nucleic Acids Res. 2004, 32, 1792–1797. doi:10.1093/nar/gkh340
Return to citation in text: [1] -
Jacobowitz, J. R.; Weng, J.-K. Annu. Rev. Plant Biol. 2020, 71, 631–658. doi:10.1146/annurev-arplant-081519-035634
Return to citation in text: [1] -
Chuang, L.; Franke, J. Rapid Combinatorial Coexpression of Biosynthetic Genes by Transient Expression in the Plant Host Nicotiana Benthamiana. In Engineering Natural Product Biosynthesis: Methods and Protocols; Skellam, E., Ed.; Methods in Molecular Biology; Springer US: New York, NY, USA, 2022; pp 395–420. doi:10.1007/978-1-0716-2273-5_20
Return to citation in text: [1] -
Dang, T.-T. T.; Franke, J.; Carqueijeiro, I. S. T.; Langley, C.; Courdavault, V.; O’Connor, S. E. Nat. Chem. Biol. 2018, 14, 760–763. doi:10.1038/s41589-018-0078-4
Return to citation in text: [1] -
Nett, R. S.; Lau, W.; Sattely, E. S. Nature 2020, 584, 148–153. doi:10.1038/s41586-020-2546-8
Return to citation in text: [1] -
Arnqvist, L.; Persson, M.; Jonsson, L.; Dutta, P. C.; Sitbon, F. Planta 2008, 227, 309–317. doi:10.1007/s00425-007-0618-8
Return to citation in text: [1] -
Cabello-Hurtado, F.; Taton, M.; Forthoffer, N.; Kahn, R.; Bak, S.; Rahier, A.; Werck-Reichhart, D. Eur. J. Biochem. 1999, 262, 435–446. doi:10.1046/j.1432-1327.1999.00376.x
Return to citation in text: [1] -
Geisler, K.; Hughes, R. K.; Sainsbury, F.; Lomonossoff, G. P.; Rejzek, M.; Fairhurst, S.; Olsen, C.-E.; Motawia, M. S.; Melton, R. E.; Hemmings, A. M.; Bak, S.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, E3360–E3367. doi:10.1073/pnas.1309157110
Return to citation in text: [1] -
Kasai, R.; Nie, R.-L.; Nashi, K.; Ohtani, K.; Zhou, J.; Tao, G.-D.; Tanaka, O. Agric. Biol. Chem. 1989, 53, 3347–3349. doi:10.1080/00021369.1989.10869815
Return to citation in text: [1] -
Zhang, J.; Dai, L.; Yang, J.; Liu, C.; Men, Y.; Zeng, Y.; Cai, Y.; Zhu, Y.; Sun, Y. Plant Cell Physiol. 2016, 57, 1000–1007. doi:10.1093/pcp/pcw038
Return to citation in text: [1] -
Itkin, M.; Davidovich-Rikanati, R.; Cohen, S.; Portnoy, V.; Doron-Faigenboim, A.; Oren, E.; Freilich, S.; Tzuri, G.; Baranes, N.; Shen, S.; Petreikov, M.; Sertchook, R.; Ben-Dor, S.; Gottlieb, H.; Hernandez, A.; Nelson, D. R.; Paris, H. S.; Tadmor, Y.; Burger, Y.; Lewinsohn, E.; Katzir, N.; Schaffer, A. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, E7619–E7628. doi:10.1073/pnas.1604828113
Return to citation in text: [1] -
Han, J.-Y.; Kim, H.-J.; Kwon, Y.-S.; Choi, Y.-E. Plant Cell Physiol. 2011, 52, 2062–2073. doi:10.1093/pcp/pcr150
Return to citation in text: [1] -
Li, L.-J.; Tan, W.-S.; Li, W.-J.; Zhu, Y.-B.; Cheng, Y.-S.; Ni, H. Int. J. Mol. Sci. 2019, 20, 6194. doi:10.3390/ijms20246194
Return to citation in text: [1] -
Pandreka, A.; Chaya, P. S.; Kumar, A.; Aarthy, T.; Mulani, F. A.; Bhagyashree, D. D.; B, S. H.; Jennifer, C.; Ponnusamy, S.; Nagegowda, D.; Thulasiram, H. V. Phytochemistry 2021, 184, 112669. doi:10.1016/j.phytochem.2021.112669
Return to citation in text: [1] -
Lian, X.; Zhang, X.; Wang, F.; Wang, X.; Xue, Z.; Qi, X. Physiol. Plant. 2020, 170, 528–536. doi:10.1111/ppl.13189
Return to citation in text: [1] -
Chuang, L.; Liu, S.; Biedermann, D.; Franke, J. Front. Plant Sci. 2022, 13, 958138. doi:10.3389/fpls.2022.958138
Return to citation in text: [1] -
Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Nature 2021, 1–11. doi:10.1038/s41586-021-03819-2
Return to citation in text: [1]
45. | Fanani, M. Z.; Fukushima, E. O.; Sawai, S.; Tang, J.; Ishimori, M.; Sudo, H.; Ohyama, K.; Seki, H.; Saito, K.; Muranaka, T. Front. Plant Sci. 2019, 10, 1520. doi:10.3389/fpls.2019.01520 |
52. | Kim, O. T.; Um, Y.; Jin, M. L.; Kim, J. U.; Hegebarth, D.; Busta, L.; Racovita, R. C.; Jetter, R. Plant Cell Physiol. 2018, 59, 1200–1213. doi:10.1093/pcp/pcy055 |
45. | Fanani, M. Z.; Fukushima, E. O.; Sawai, S.; Tang, J.; Ishimori, M.; Sudo, H.; Ohyama, K.; Seki, H.; Saito, K.; Muranaka, T. Front. Plant Sci. 2019, 10, 1520. doi:10.3389/fpls.2019.01520 |
45. | Fanani, M. Z.; Fukushima, E. O.; Sawai, S.; Tang, J.; Ishimori, M.; Sudo, H.; Ohyama, K.; Seki, H.; Saito, K.; Muranaka, T. Front. Plant Sci. 2019, 10, 1520. doi:10.3389/fpls.2019.01520 |
79. | Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P. D.; Pauwels, L.; Aharoni, A.; Martins, J.; Nelson, D. R.; Goossens, A. Nat. Commun. 2017, 8, 14153. doi:10.1038/ncomms14153 |
35. | Christ, B.; Xu, C.; Xu, M.; Li, F.-S.; Wada, N.; Mitchell, A. J.; Han, X.-L.; Wen, M.-L.; Fujita, M.; Weng, J.-K. Nat. Commun. 2019, 10, 3206. doi:10.1038/s41467-019-11286-7 |
102. | Itkin, M.; Davidovich-Rikanati, R.; Cohen, S.; Portnoy, V.; Doron-Faigenboim, A.; Oren, E.; Freilich, S.; Tzuri, G.; Baranes, N.; Shen, S.; Petreikov, M.; Sertchook, R.; Ben-Dor, S.; Gottlieb, H.; Hernandez, A.; Nelson, D. R.; Paris, H. S.; Tadmor, Y.; Burger, Y.; Lewinsohn, E.; Katzir, N.; Schaffer, A. Proc. Natl. Acad. Sci. U. S. A. 2016, 113, E7619–E7628. doi:10.1073/pnas.1604828113 |
1. | Qi, X.; Bakht, S.; Qin, B.; Leggett, M.; Hemmings, A.; Mellon, F.; Eagles, J.; Werck-Reichhart, D.; Schaller, H.; Lesot, A.; Melton, R.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 18848–18853. doi:10.1073/pnas.0607849103 |
99. | Geisler, K.; Hughes, R. K.; Sainsbury, F.; Lomonossoff, G. P.; Rejzek, M.; Fairhurst, S.; Olsen, C.-E.; Motawia, M. S.; Melton, R. E.; Hemmings, A. M.; Bak, S.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, E3360–E3367. doi:10.1073/pnas.1309157110 |
24. | Bak, S.; Kahn, R. A.; Olsen, C. E.; Halkier, B. A. Plant J. 1997, 11, 191–201. doi:10.1046/j.1365-313x.1997.11020191.x |
25. | Kushiro, M.; Nakano, T.; Sato, K.; Yamagishi, K.; Asami, T.; Nakano, A.; Takatsuto, S.; Fujioka, S.; Ebizuka, Y.; Yoshida, S. Biochem. Biophys. Res. Commun. 2001, 285, 98–104. doi:10.1006/bbrc.2001.5122 |
56. | Bishop, G. J.; Nomura, T.; Yokota, T.; Harrison, K.; Noguchi, T.; Fujioka, S.; Takatsuto, S.; Jones, J. D. G.; Kamiya, Y. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 1761–1766. doi:10.1073/pnas.96.4.1761 |
101. | Zhang, J.; Dai, L.; Yang, J.; Liu, C.; Men, Y.; Zeng, Y.; Cai, Y.; Zhu, Y.; Sun, Y. Plant Cell Physiol. 2016, 57, 1000–1007. doi:10.1093/pcp/pcw038 |
100. | Kasai, R.; Nie, R.-L.; Nashi, K.; Ohtani, K.; Zhou, J.; Tao, G.-D.; Tanaka, O. Agric. Biol. Chem. 1989, 53, 3347–3349. doi:10.1080/00021369.1989.10869815 |
54. | Dai, Z.; Liu, Y.; Sun, Z.; Wang, D.; Qu, G.; Ma, X.; Fan, F.; Zhang, L.; Li, S.; Zhang, X. Metab. Eng. 2019, 51, 70–78. doi:10.1016/j.ymben.2018.10.001 |
5. | Thimmappa, R.; Geisler, K.; Louveau, T.; O'Maille, P.; Osbourn, A. Annu. Rev. Plant Biol. 2014, 65, 225–257. doi:10.1146/annurev-arplant-050312-120229 |
55. | Shimada, Y.; Fujioka, S.; Miyauchi, N.; Kushiro, M.; Takatsuto, S.; Nomura, T.; Yokota, T.; Kamiya, Y.; Bishop, G. J.; Yoshida, S. Plant Physiol. 2001, 126, 770–779. doi:10.1104/pp.126.2.770 |
93. | Jacobowitz, J. R.; Weng, J.-K. Annu. Rev. Plant Biol. 2020, 71, 631–658. doi:10.1146/annurev-arplant-081519-035634 |
94. | Chuang, L.; Franke, J. Rapid Combinatorial Coexpression of Biosynthetic Genes by Transient Expression in the Plant Host Nicotiana Benthamiana. In Engineering Natural Product Biosynthesis: Methods and Protocols; Skellam, E., Ed.; Methods in Molecular Biology; Springer US: New York, NY, USA, 2022; pp 395–420. doi:10.1007/978-1-0716-2273-5_20 |
95. | Dang, T.-T. T.; Franke, J.; Carqueijeiro, I. S. T.; Langley, C.; Courdavault, V.; O’Connor, S. E. Nat. Chem. Biol. 2018, 14, 760–763. doi:10.1038/s41589-018-0078-4 |
96. | Nett, R. S.; Lau, W.; Sattely, E. S. Nature 2020, 584, 148–153. doi:10.1038/s41586-020-2546-8 |
36. | Li, L.; Lin, S.; Chen, Y.; Wang, Y.; Xiao, L.; Ye, X.; Sun, L.; Zhan, R.; Xu, H. Front. Plant Sci. 2022, 13, 831401. doi:10.3389/fpls.2022.831401 |
24. | Bak, S.; Kahn, R. A.; Olsen, C. E.; Halkier, B. A. Plant J. 1997, 11, 191–201. doi:10.1046/j.1365-313x.1997.11020191.x |
25. | Kushiro, M.; Nakano, T.; Sato, K.; Yamagishi, K.; Asami, T.; Nakano, A.; Takatsuto, S.; Fujioka, S.; Ebizuka, Y.; Yoshida, S. Biochem. Biophys. Res. Commun. 2001, 285, 98–104. doi:10.1006/bbrc.2001.5122 |
98. | Cabello-Hurtado, F.; Taton, M.; Forthoffer, N.; Kahn, R.; Bak, S.; Rahier, A.; Werck-Reichhart, D. Eur. J. Biochem. 1999, 262, 435–446. doi:10.1046/j.1432-1327.1999.00376.x |
53. | Ohnishi, T.; Nomura, T.; Watanabe, B.; Ohta, D.; Yokota, T.; Miyagawa, H.; Sakata, K.; Mizutani, M. Phytochemistry 2006, 67, 1895–1906. doi:10.1016/j.phytochem.2006.05.042 |
91. | Morikawa, T.; Mizutani, M.; Aoki, N.; Watanabe, B.; Saga, H.; Saito, S.; Oikawa, A.; Suzuki, H.; Sakurai, N.; Shibata, D.; Wadano, A.; Sakata, K.; Ohta, D. Plant Cell 2006, 18, 1008–1022. doi:10.1105/tpc.105.036012 |
97. | Arnqvist, L.; Persson, M.; Jonsson, L.; Dutta, P. C.; Sitbon, F. Planta 2008, 227, 309–317. doi:10.1007/s00425-007-0618-8 |
71. | Carelli, M.; Biazzi, E.; Panara, F.; Tava, A.; Scaramelli, L.; Porceddu, A.; Graham, N.; Odoardi, M.; Piano, E.; Arcioni, S.; May, S.; Scotti, C.; Calderini, O. Plant Cell 2011, 23, 3070–3081. doi:10.1105/tpc.111.087312 |
73. | Fukushima, E. O.; Seki, H.; Ohyama, K.; Ono, E.; Umemoto, N.; Mizutani, M.; Saito, K.; Muranaka, T. Plant Cell Physiol. 2011, 52, 2050–2061. doi:10.1093/pcp/pcr146 |
34. | Zhou, Y.; Ma, Y.; Zeng, J.; Duan, L.; Xue, X.; Wang, H.; Lin, T.; Liu, Z.; Zeng, K.; Zhong, Y.; Zhang, S.; Hu, Q.; Liu, M.; Zhang, H.; Reed, J.; Moses, T.; Liu, X.; Huang, P.; Qing, Z.; Liu, X.; Tu, P.; Kuang, H.; Zhang, Z.; Osbourn, A.; Ro, D.-K.; Shang, Y.; Huang, S. Nat. Plants (London, U. K.) 2016, 2, 16183. doi:10.1038/nplants.2016.183 |
39. | Seki, H.; Ohyama, K.; Sawai, S.; Mizutani, M.; Ohnishi, T.; Sudo, H.; Akashi, T.; Aoki, T.; Saito, K.; Muranaka, T. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 14204–14209. doi:10.1073/pnas.0803876105 |
59. | Moses, T.; Pollier, J.; Faizal, A.; Apers, S.; Pieters, L.; Thevelein, J. M.; Geelen, D.; Goossens, A. Mol. Plant 2015, 8, 122–135. doi:10.1016/j.molp.2014.11.004 |
34. | Zhou, Y.; Ma, Y.; Zeng, J.; Duan, L.; Xue, X.; Wang, H.; Lin, T.; Liu, Z.; Zeng, K.; Zhong, Y.; Zhang, S.; Hu, Q.; Liu, M.; Zhang, H.; Reed, J.; Moses, T.; Liu, X.; Huang, P.; Qing, Z.; Liu, X.; Tu, P.; Kuang, H.; Zhang, Z.; Osbourn, A.; Ro, D.-K.; Shang, Y.; Huang, S. Nat. Plants (London, U. K.) 2016, 2, 16183. doi:10.1038/nplants.2016.183 |
57. | Shimada, Y.; Goda, H.; Nakamura, A.; Takatsuto, S.; Fujioka, S.; Yoshida, S. Plant Physiol. 2003, 131, 287–297. doi:10.1104/pp.013029 |
58. | Nomura, T.; Kushiro, T.; Yokota, T.; Kamiya, Y.; Bishop, G. J.; Yamaguchi, S. J. Biol. Chem. 2005, 280, 17873–17879. doi:10.1074/jbc.m414592200 |
58. | Nomura, T.; Kushiro, T.; Yokota, T.; Kamiya, Y.; Bishop, G. J.; Yamaguchi, S. J. Biol. Chem. 2005, 280, 17873–17879. doi:10.1074/jbc.m414592200 |
27. | Field, B.; Fiston-Lavier, A.-S.; Kemen, A.; Geisler, K.; Quesneville, H.; Osbourn, A. E. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 16116–16121. doi:10.1073/pnas.1109273108 |
41. | Field, B.; Osbourn, A. E. Science 2008, 320, 543–547. doi:10.1126/science.1154990 |
37. | Shibuya, M.; Hoshino, M.; Katsube, Y.; Hayashi, H.; Kushiro, T.; Ebizuka, Y. FEBS J. 2006, 273, 948–959. doi:10.1111/j.1742-4658.2006.05120.x |
40. | Moses, T.; Thevelein, J. M.; Goossens, A.; Pollier, J. Phytochemistry 2014, 108, 47–56. doi:10.1016/j.phytochem.2014.10.002 |
42. | Hansen, N. L.; Miettinen, K.; Zhao, Y.; Ignea, C.; Andreadelli, A.; Raadam, M. H.; Makris, A. M.; Møller, B. L.; Stærk, D.; Bak, S.; Kampranis, S. C. Microb. Cell Fact. 2020, 19, 15. doi:10.1186/s12934-020-1284-9 |
43. | Bicalho, K. U.; Santoni, M. M.; Arendt, P.; Zanelli, C. F.; Furlan, M.; Goossens, A.; Pollier, J. Plant Cell Physiol. 2019, 60, 2510–2522. doi:10.1093/pcp/pcz144 |
25. | Kushiro, M.; Nakano, T.; Sato, K.; Yamagishi, K.; Asami, T.; Nakano, A.; Takatsuto, S.; Fujioka, S.; Ebizuka, Y.; Yoshida, S. Biochem. Biophys. Res. Commun. 2001, 285, 98–104. doi:10.1006/bbrc.2001.5122 |
26. | Polturak, G.; Dippe, M.; Stephenson, M. J.; Chandra Misra, R.; Owen, C.; Ramirez-Gonzalez, R. H.; Haidoulis, J. F.; Schoonbeek, H.-J.; Chartrain, L.; Borrill, P.; Nelson, D. R.; Brown, J. K. M.; Nicholson, P.; Uauy, C.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2123299119. doi:10.1073/pnas.2123299119 |
37. | Shibuya, M.; Hoshino, M.; Katsube, Y.; Hayashi, H.; Kushiro, T.; Ebizuka, Y. FEBS J. 2006, 273, 948–959. doi:10.1111/j.1742-4658.2006.05120.x |
40. | Moses, T.; Thevelein, J. M.; Goossens, A.; Pollier, J. Phytochemistry 2014, 108, 47–56. doi:10.1016/j.phytochem.2014.10.002 |
46. | Seki, H.; Sawai, S.; Ohyama, K.; Mizutani, M.; Ohnishi, T.; Sudo, H.; Fukushima, E. O.; Akashi, T.; Aoki, T.; Saito, K.; Muranaka, T. Plant Cell 2011, 23, 4112–4123. doi:10.1105/tpc.110.082685 |
32. | Takase, S.; Kera, K.; Nagashima, Y.; Mannen, K.; Hosouchi, T.; Shinpo, S.; Kawashima, M.; Kotake, Y.; Yamada, H.; Saga, Y.; Otaka, J.; Araya, H.; Kotera, M.; Suzuki, H.; Kushiro, T. J. Biol. Chem. 2019, 294, 18662–18673. doi:10.1074/jbc.ra119.009944 |
76. | Han, J.-Y.; Hwang, H.-S.; Choi, S.-W.; Kim, H.-J.; Choi, Y.-E. Plant Cell Physiol. 2012, 53, 1535–1545. doi:10.1093/pcp/pcs106 |
103. | Han, J.-Y.; Kim, H.-J.; Kwon, Y.-S.; Choi, Y.-E. Plant Cell Physiol. 2011, 52, 2062–2073. doi:10.1093/pcp/pcr150 |
60. | Ohnishi, T.; Godza, B.; Watanabe, B.; Fujioka, S.; Hategan, L.; Ide, K.; Shibata, K.; Yokota, T.; Szekeres, M.; Mizutani, M. J. Biol. Chem. 2012, 287, 31551–31560. doi:10.1074/jbc.m112.392720 |
40. | Moses, T.; Thevelein, J. M.; Goossens, A.; Pollier, J. Phytochemistry 2014, 108, 47–56. doi:10.1016/j.phytochem.2014.10.002 |
72. | Moses, T.; Pollier, J.; Shen, Q.; Soetaert, S.; Reed, J.; Erffelinck, M.-L.; Van Nieuwerburgh, F. C. W.; Vanden Bossche, R.; Osbourn, A.; Thevelein, J. M.; Deforce, D.; Tang, K.; Goossens, A. Plant Cell 2015, 27, 286–301. doi:10.1105/tpc.114.134486 |
79. | Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P. D.; Pauwels, L.; Aharoni, A.; Martins, J.; Nelson, D. R.; Goossens, A. Nat. Commun. 2017, 8, 14153. doi:10.1038/ncomms14153 |
34. | Zhou, Y.; Ma, Y.; Zeng, J.; Duan, L.; Xue, X.; Wang, H.; Lin, T.; Liu, Z.; Zeng, K.; Zhong, Y.; Zhang, S.; Hu, Q.; Liu, M.; Zhang, H.; Reed, J.; Moses, T.; Liu, X.; Huang, P.; Qing, Z.; Liu, X.; Tu, P.; Kuang, H.; Zhang, Z.; Osbourn, A.; Ro, D.-K.; Shang, Y.; Huang, S. Nat. Plants (London, U. K.) 2016, 2, 16183. doi:10.1038/nplants.2016.183 |
42. | Hansen, N. L.; Miettinen, K.; Zhao, Y.; Ignea, C.; Andreadelli, A.; Raadam, M. H.; Makris, A. M.; Møller, B. L.; Stærk, D.; Bak, S.; Kampranis, S. C. Microb. Cell Fact. 2020, 19, 15. doi:10.1186/s12934-020-1284-9 |
43. | Bicalho, K. U.; Santoni, M. M.; Arendt, P.; Zanelli, C. F.; Furlan, M.; Goossens, A.; Pollier, J. Plant Cell Physiol. 2019, 60, 2510–2522. doi:10.1093/pcp/pcz144 |
32. | Takase, S.; Kera, K.; Nagashima, Y.; Mannen, K.; Hosouchi, T.; Shinpo, S.; Kawashima, M.; Kotake, Y.; Yamada, H.; Saga, Y.; Otaka, J.; Araya, H.; Kotera, M.; Suzuki, H.; Kushiro, T. J. Biol. Chem. 2019, 294, 18662–18673. doi:10.1074/jbc.ra119.009944 |
79. | Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P. D.; Pauwels, L.; Aharoni, A.; Martins, J.; Nelson, D. R.; Goossens, A. Nat. Commun. 2017, 8, 14153. doi:10.1038/ncomms14153 |
35. | Christ, B.; Xu, C.; Xu, M.; Li, F.-S.; Wada, N.; Mitchell, A. J.; Han, X.-L.; Wen, M.-L.; Fujita, M.; Weng, J.-K. Nat. Commun. 2019, 10, 3206. doi:10.1038/s41467-019-11286-7 |
66. | Zhou, C.; Yang, Y.; Tian, J.; Wu, Y.; An, F.; Li, C.; Zhang, Y. Plant J. 2022, 109, 940–951. doi:10.1111/tpj.15604 |
41. | Field, B.; Osbourn, A. E. Science 2008, 320, 543–547. doi:10.1126/science.1154990 |
44. | Fukushima, E. O.; Seki, H.; Sawai, S.; Suzuki, M.; Ohyama, K.; Saito, K.; Muranaka, T. Plant Cell Physiol. 2013, 54, 740–749. doi:10.1093/pcp/pct015 |
44. | Fukushima, E. O.; Seki, H.; Sawai, S.; Suzuki, M.; Ohyama, K.; Saito, K.; Muranaka, T. Plant Cell Physiol. 2013, 54, 740–749. doi:10.1093/pcp/pct015 |
43. | Bicalho, K. U.; Santoni, M. M.; Arendt, P.; Zanelli, C. F.; Furlan, M.; Goossens, A.; Pollier, J. Plant Cell Physiol. 2019, 60, 2510–2522. doi:10.1093/pcp/pcz144 |
44. | Fukushima, E. O.; Seki, H.; Sawai, S.; Suzuki, M.; Ohyama, K.; Saito, K.; Muranaka, T. Plant Cell Physiol. 2013, 54, 740–749. doi:10.1093/pcp/pct015 |
15. | Hansen, C. C.; Nelson, D. R.; Møller, B. L.; Werck-Reichhart, D. Mol. Plant 2021, 14, 1244–1265. doi:10.1016/j.molp.2021.06.028 |
66. | Zhou, C.; Yang, Y.; Tian, J.; Wu, Y.; An, F.; Li, C.; Zhang, Y. Plant J. 2022, 109, 940–951. doi:10.1111/tpj.15604 |
47. | Biazzi, E.; Carelli, M.; Tava, A.; Abbruscato, P.; Losini, I.; Avato, P.; Scotti, C.; Calderini, O. Mol. Plant 2015, 8, 1493–1506. doi:10.1016/j.molp.2015.06.003 |
48. | Tzin, V.; Snyder, J. H.; Yang, D. S.; Huhman, D. V.; Watson, B. S.; Allen, S. N.; Tang, Y.; Miettinen, K.; Arendt, P.; Pollier, J.; Goossens, A.; Sumner, L. W. Metabolomics 2019, 15, 85. doi:10.1007/s11306-019-1542-1 |
104. | Li, L.-J.; Tan, W.-S.; Li, W.-J.; Zhu, Y.-B.; Cheng, Y.-S.; Ni, H. Int. J. Mol. Sci. 2019, 20, 6194. doi:10.3390/ijms20246194 |
48. | Tzin, V.; Snyder, J. H.; Yang, D. S.; Huhman, D. V.; Watson, B. S.; Allen, S. N.; Tang, Y.; Miettinen, K.; Arendt, P.; Pollier, J.; Goossens, A.; Sumner, L. W. Metabolomics 2019, 15, 85. doi:10.1007/s11306-019-1542-1 |
26. | Polturak, G.; Dippe, M.; Stephenson, M. J.; Chandra Misra, R.; Owen, C.; Ramirez-Gonzalez, R. H.; Haidoulis, J. F.; Schoonbeek, H.-J.; Chartrain, L.; Borrill, P.; Nelson, D. R.; Brown, J. K. M.; Nicholson, P.; Uauy, C.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2123299119. doi:10.1073/pnas.2123299119 |
45. | Fanani, M. Z.; Fukushima, E. O.; Sawai, S.; Tang, J.; Ishimori, M.; Sudo, H.; Ohyama, K.; Seki, H.; Saito, K.; Muranaka, T. Front. Plant Sci. 2019, 10, 1520. doi:10.3389/fpls.2019.01520 |
29. | Hodgson, H.; De La Peña, R.; Stephenson, M. J.; Thimmappa, R.; Vincent, J. L.; Sattely, E. S.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 17096–17104. doi:10.1073/pnas.1906083116 |
45. | Fanani, M. Z.; Fukushima, E. O.; Sawai, S.; Tang, J.; Ishimori, M.; Sudo, H.; Ohyama, K.; Seki, H.; Saito, K.; Muranaka, T. Front. Plant Sci. 2019, 10, 1520. doi:10.3389/fpls.2019.01520 |
26. | Polturak, G.; Dippe, M.; Stephenson, M. J.; Chandra Misra, R.; Owen, C.; Ramirez-Gonzalez, R. H.; Haidoulis, J. F.; Schoonbeek, H.-J.; Chartrain, L.; Borrill, P.; Nelson, D. R.; Brown, J. K. M.; Nicholson, P.; Uauy, C.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2123299119. doi:10.1073/pnas.2123299119 |
45. | Fanani, M. Z.; Fukushima, E. O.; Sawai, S.; Tang, J.; Ishimori, M.; Sudo, H.; Ohyama, K.; Seki, H.; Saito, K.; Muranaka, T. Front. Plant Sci. 2019, 10, 1520. doi:10.3389/fpls.2019.01520 |
35. | Christ, B.; Xu, C.; Xu, M.; Li, F.-S.; Wada, N.; Mitchell, A. J.; Han, X.-L.; Wen, M.-L.; Fujita, M.; Weng, J.-K. Nat. Commun. 2019, 10, 3206. doi:10.1038/s41467-019-11286-7 |
46. | Seki, H.; Sawai, S.; Ohyama, K.; Mizutani, M.; Ohnishi, T.; Sudo, H.; Fukushima, E. O.; Akashi, T.; Aoki, T.; Saito, K.; Muranaka, T. Plant Cell 2011, 23, 4112–4123. doi:10.1105/tpc.110.082685 |
35. | Christ, B.; Xu, C.; Xu, M.; Li, F.-S.; Wada, N.; Mitchell, A. J.; Han, X.-L.; Wen, M.-L.; Fujita, M.; Weng, J.-K. Nat. Commun. 2019, 10, 3206. doi:10.1038/s41467-019-11286-7 |
66. | Zhou, C.; Yang, Y.; Tian, J.; Wu, Y.; An, F.; Li, C.; Zhang, Y. Plant J. 2022, 109, 940–951. doi:10.1111/tpj.15604 |
46. | Seki, H.; Sawai, S.; Ohyama, K.; Mizutani, M.; Ohnishi, T.; Sudo, H.; Fukushima, E. O.; Akashi, T.; Aoki, T.; Saito, K.; Muranaka, T. Plant Cell 2011, 23, 4112–4123. doi:10.1105/tpc.110.082685 |
45. | Fanani, M. Z.; Fukushima, E. O.; Sawai, S.; Tang, J.; Ishimori, M.; Sudo, H.; Ohyama, K.; Seki, H.; Saito, K.; Muranaka, T. Front. Plant Sci. 2019, 10, 1520. doi:10.3389/fpls.2019.01520 |
49. | Yano, R.; Takagi, K.; Takada, Y.; Mukaiyama, K.; Tsukamoto, C.; Sayama, T.; Kaga, A.; Anai, T.; Sawai, S.; Ohyama, K.; Saito, K.; Ishimoto, M. Plant J. 2017, 89, 527–539. doi:10.1111/tpj.13403 |
45. | Fanani, M. Z.; Fukushima, E. O.; Sawai, S.; Tang, J.; Ishimori, M.; Sudo, H.; Ohyama, K.; Seki, H.; Saito, K.; Muranaka, T. Front. Plant Sci. 2019, 10, 1520. doi:10.3389/fpls.2019.01520 |
45. | Fanani, M. Z.; Fukushima, E. O.; Sawai, S.; Tang, J.; Ishimori, M.; Sudo, H.; Ohyama, K.; Seki, H.; Saito, K.; Muranaka, T. Front. Plant Sci. 2019, 10, 1520. doi:10.3389/fpls.2019.01520 |
35. | Christ, B.; Xu, C.; Xu, M.; Li, F.-S.; Wada, N.; Mitchell, A. J.; Han, X.-L.; Wen, M.-L.; Fujita, M.; Weng, J.-K. Nat. Commun. 2019, 10, 3206. doi:10.1038/s41467-019-11286-7 |
45. | Fanani, M. Z.; Fukushima, E. O.; Sawai, S.; Tang, J.; Ishimori, M.; Sudo, H.; Ohyama, K.; Seki, H.; Saito, K.; Muranaka, T. Front. Plant Sci. 2019, 10, 1520. doi:10.3389/fpls.2019.01520 |
45. | Fanani, M. Z.; Fukushima, E. O.; Sawai, S.; Tang, J.; Ishimori, M.; Sudo, H.; Ohyama, K.; Seki, H.; Saito, K.; Muranaka, T. Front. Plant Sci. 2019, 10, 1520. doi:10.3389/fpls.2019.01520 |
50. | Han, J. Y.; Chun, J.-H.; Oh, S. A.; Park, S.-B.; Hwang, H.-S.; Lee, H.; Choi, Y. E. Plant Cell Physiol. 2018, 59, 319–330. doi:10.1093/pcp/pcx188 |
51. | Liu, Q.; Khakimov, B.; Cárdenas, P. D.; Cozzi, F.; Olsen, C. E.; Jensen, K. R.; Hauser, T. P.; Bak, S. New Phytol. 2019, 222, 1599–1609. doi:10.1111/nph.15689 |
84. | Tamura, K.; Seki, H.; Suzuki, H.; Kojoma, M.; Saito, K.; Muranaka, T. Plant Cell Rep. 2017, 36, 437–445. doi:10.1007/s00299-016-2092-x |
83. | Andre, C. M.; Legay, S.; Deleruelle, A.; Nieuwenhuizen, N.; Punter, M.; Brendolise, C.; Cooney, J. M.; Lateur, M.; Hausman, J.-F.; Larondelle, Y.; Laing, W. A. New Phytol. 2016, 211, 1279–1294. doi:10.1111/nph.13996 |
79. | Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P. D.; Pauwels, L.; Aharoni, A.; Martins, J.; Nelson, D. R.; Goossens, A. Nat. Commun. 2017, 8, 14153. doi:10.1038/ncomms14153 |
80. | Tamura, K.; Teranishi, Y.; Ueda, S.; Suzuki, H.; Kawano, N.; Yoshimatsu, K.; Saito, K.; Kawahara, N.; Muranaka, T.; Seki, H. Plant Cell Physiol. 2017, 58, 874–884. doi:10.1093/pcp/pcx043 |
80. | Tamura, K.; Teranishi, Y.; Ueda, S.; Suzuki, H.; Kawano, N.; Yoshimatsu, K.; Saito, K.; Kawahara, N.; Muranaka, T.; Seki, H. Plant Cell Physiol. 2017, 58, 874–884. doi:10.1093/pcp/pcx043 |
82. | Huang, J.; Zha, W.; An, T.; Dong, H.; Huang, Y.; Wang, D.; Yu, R.; Duan, L.; Zhang, X.; Peters, R. J.; Dai, Z.; Zi, J. Appl. Microbiol. Biotechnol. 2019, 103, 7029–7039. doi:10.1007/s00253-019-10004-z |
81. | Huang, L.; Li, J.; Ye, H.; Li, C.; Wang, H.; Liu, B.; Zhang, Y. Planta 2012, 236, 1571–1581. doi:10.1007/s00425-012-1712-0 |
79. | Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P. D.; Pauwels, L.; Aharoni, A.; Martins, J.; Nelson, D. R.; Goossens, A. Nat. Commun. 2017, 8, 14153. doi:10.1038/ncomms14153 |
79. | Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P. D.; Pauwels, L.; Aharoni, A.; Martins, J.; Nelson, D. R.; Goossens, A. Nat. Commun. 2017, 8, 14153. doi:10.1038/ncomms14153 |
79. | Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P. D.; Pauwels, L.; Aharoni, A.; Martins, J.; Nelson, D. R.; Goossens, A. Nat. Commun. 2017, 8, 14153. doi:10.1038/ncomms14153 |
79. | Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P. D.; Pauwels, L.; Aharoni, A.; Martins, J.; Nelson, D. R.; Goossens, A. Nat. Commun. 2017, 8, 14153. doi:10.1038/ncomms14153 |
89. | Sandeep; Misra, R. C.; Chanotiya, C. S.; Mukhopadhyay, P.; Ghosh, S. New Phytol. 2019, 222, 408–424. doi:10.1111/nph.15606 |
89. | Sandeep; Misra, R. C.; Chanotiya, C. S.; Mukhopadhyay, P.; Ghosh, S. New Phytol. 2019, 222, 408–424. doi:10.1111/nph.15606 |
89. | Sandeep; Misra, R. C.; Chanotiya, C. S.; Mukhopadhyay, P.; Ghosh, S. New Phytol. 2019, 222, 408–424. doi:10.1111/nph.15606 |
54. | Dai, Z.; Liu, Y.; Sun, Z.; Wang, D.; Qu, G.; Ma, X.; Fan, F.; Zhang, L.; Li, S.; Zhang, X. Metab. Eng. 2019, 51, 70–78. doi:10.1016/j.ymben.2018.10.001 |
79. | Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P. D.; Pauwels, L.; Aharoni, A.; Martins, J.; Nelson, D. R.; Goossens, A. Nat. Commun. 2017, 8, 14153. doi:10.1038/ncomms14153 |
87. | Jo, H.-J.; Han, J. Y.; Hwang, H.-S.; Choi, Y. E. Phytochemistry 2017, 135, 53–63. doi:10.1016/j.phytochem.2016.12.011 |
86. | Ji, X.; Lin, S.; Chen, Y.; Liu, J.; Yun, X.; Wang, T.; Qin, J.; Luo, C.; Wang, K.; Zhao, Z.; Zhan, R.; Xu, H. Front. Plant Sci. 2020, 11, 612. doi:10.3389/fpls.2020.00612 |
88. | Misra, R. C.; Sharma, S.; Sandeep; Garg, A.; Chanotiya, C. S.; Ghosh, S. New Phytol. 2017, 214, 706–720. doi:10.1111/nph.14412 |
88. | Misra, R. C.; Sharma, S.; Sandeep; Garg, A.; Chanotiya, C. S.; Ghosh, S. New Phytol. 2017, 214, 706–720. doi:10.1111/nph.14412 |
85. | Zhou, C.; Li, J.; Li, C.; Zhang, Y. BMC Biotechnol. 2016, 16, 59. doi:10.1186/s12896-016-0290-9 |
35. | Christ, B.; Xu, C.; Xu, M.; Li, F.-S.; Wada, N.; Mitchell, A. J.; Han, X.-L.; Wen, M.-L.; Fujita, M.; Weng, J.-K. Nat. Commun. 2019, 10, 3206. doi:10.1038/s41467-019-11286-7 |
66. | Zhou, C.; Yang, Y.; Tian, J.; Wu, Y.; An, F.; Li, C.; Zhang, Y. Plant J. 2022, 109, 940–951. doi:10.1111/tpj.15604 |
64. | Augustin, M. M.; Ruzicka, D. R.; Shukla, A. K.; Augustin, J. M.; Starks, C. M.; O'Neil‐Johnson, M.; McKain, M. R.; Evans, B. S.; Barrett, M. D.; Smithson, A.; Wong, G. K.-S.; Deyholos, M. K.; Edger, P. P.; Pires, J. C.; Leebens‐Mack, J. H.; Mann, D. A.; Kutchan, T. M. Plant J. 2015, 82, 991–1003. doi:10.1111/tpj.12871 |
65. | Yin, Y.; Gao, L.; Zhang, X.; Gao, W. Phytochemistry 2018, 156, 116–123. doi:10.1016/j.phytochem.2018.09.005 |
62. | Sakamoto, T.; Morinaka, Y.; Ohnishi, T.; Sunohara, H.; Fujioka, S.; Ueguchi-Tanaka, M.; Mizutani, M.; Sakata, K.; Takatsuto, S.; Yoshida, S.; Tanaka, H.; Kitano, H.; Matsuoka, M. Nat. Biotechnol. 2006, 24, 105–109. doi:10.1038/nbt1173 |
90. | Zhang, R.; Xia, X.; Lindsey, K.; da Rocha, P. S. C. F. J. Plant Physiol. 2012, 169, 421–428. doi:10.1016/j.jplph.2011.10.013 |
63. | Ohnishi, T.; Watanabe, B.; Sakata, K.; Mizutani, M. Biosci., Biotechnol., Biochem. 2006, 70, 2071–2080. doi:10.1271/bbb.60034 |
36. | Li, L.; Lin, S.; Chen, Y.; Wang, Y.; Xiao, L.; Ye, X.; Sun, L.; Zhan, R.; Xu, H. Front. Plant Sci. 2022, 13, 831401. doi:10.3389/fpls.2022.831401 |
63. | Ohnishi, T.; Watanabe, B.; Sakata, K.; Mizutani, M. Biosci., Biotechnol., Biochem. 2006, 70, 2071–2080. doi:10.1271/bbb.60034 |
61. | Fujita, S.; Ohnishi, T.; Watanabe, B.; Yokota, T.; Takatsuto, S.; Fujioka, S.; Yoshida, S.; Sakata, K.; Mizutani, M. Plant J. 2006, 45, 765–774. doi:10.1111/j.1365-313x.2005.02639.x |
62. | Sakamoto, T.; Morinaka, Y.; Ohnishi, T.; Sunohara, H.; Fujioka, S.; Ueguchi-Tanaka, M.; Mizutani, M.; Sakata, K.; Takatsuto, S.; Yoshida, S.; Tanaka, H.; Kitano, H.; Matsuoka, M. Nat. Biotechnol. 2006, 24, 105–109. doi:10.1038/nbt1173 |
79. | Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P. D.; Pauwels, L.; Aharoni, A.; Martins, J.; Nelson, D. R.; Goossens, A. Nat. Commun. 2017, 8, 14153. doi:10.1038/ncomms14153 |
76. | Han, J.-Y.; Hwang, H.-S.; Choi, S.-W.; Kim, H.-J.; Choi, Y.-E. Plant Cell Physiol. 2012, 53, 1535–1545. doi:10.1093/pcp/pcs106 |
38. | Moses, T.; Pollier, J.; Almagro, L.; Buyst, D.; Van Montagu, M.; Pedreño, M. A.; Martins, J. C.; Thevelein, J. M.; Goossens, A. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1634–1639. doi:10.1073/pnas.1323369111 |
76. | Han, J.-Y.; Hwang, H.-S.; Choi, S.-W.; Kim, H.-J.; Choi, Y.-E. Plant Cell Physiol. 2012, 53, 1535–1545. doi:10.1093/pcp/pcs106 |
67. | Ohnishi, T.; Szatmari, A.-M.; Watanabe, B.; Fujita, S.; Bancos, S.; Koncz, C.; Lafos, M.; Shibata, K.; Yokota, T.; Sakata, K.; Szekeres, M.; Mizutani, M. Plant Cell 2006, 18, 3275–3288. doi:10.1105/tpc.106.045443 |
35. | Christ, B.; Xu, C.; Xu, M.; Li, F.-S.; Wada, N.; Mitchell, A. J.; Han, X.-L.; Wen, M.-L.; Fujita, M.; Weng, J.-K. Nat. Commun. 2019, 10, 3206. doi:10.1038/s41467-019-11286-7 |
79. | Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P. D.; Pauwels, L.; Aharoni, A.; Martins, J.; Nelson, D. R.; Goossens, A. Nat. Commun. 2017, 8, 14153. doi:10.1038/ncomms14153 |
66. | Zhou, C.; Yang, Y.; Tian, J.; Wu, Y.; An, F.; Li, C.; Zhang, Y. Plant J. 2022, 109, 940–951. doi:10.1111/tpj.15604 |
74. | Yasumoto, S.; Seki, H.; Shimizu, Y.; Fukushima, E. O.; Muranaka, T. Front. Plant Sci. 2017, 8, 21. doi:10.3389/fpls.2017.00021 |
15. | Hansen, C. C.; Nelson, D. R.; Møller, B. L.; Werck-Reichhart, D. Mol. Plant 2021, 14, 1244–1265. doi:10.1016/j.molp.2021.06.028 |
79. | Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P. D.; Pauwels, L.; Aharoni, A.; Martins, J.; Nelson, D. R.; Goossens, A. Nat. Commun. 2017, 8, 14153. doi:10.1038/ncomms14153 |
91. | Morikawa, T.; Mizutani, M.; Aoki, N.; Watanabe, B.; Saga, H.; Saito, S.; Oikawa, A.; Suzuki, H.; Sakurai, N.; Shibata, D.; Wadano, A.; Sakata, K.; Ohta, D. Plant Cell 2006, 18, 1008–1022. doi:10.1105/tpc.105.036012 |
91. | Morikawa, T.; Mizutani, M.; Aoki, N.; Watanabe, B.; Saga, H.; Saito, S.; Oikawa, A.; Suzuki, H.; Sakurai, N.; Shibata, D.; Wadano, A.; Sakata, K.; Ohta, D. Plant Cell 2006, 18, 1008–1022. doi:10.1105/tpc.105.036012 |
91. | Morikawa, T.; Mizutani, M.; Aoki, N.; Watanabe, B.; Saga, H.; Saito, S.; Oikawa, A.; Suzuki, H.; Sakurai, N.; Shibata, D.; Wadano, A.; Sakata, K.; Ohta, D. Plant Cell 2006, 18, 1008–1022. doi:10.1105/tpc.105.036012 |
91. | Morikawa, T.; Mizutani, M.; Aoki, N.; Watanabe, B.; Saga, H.; Saito, S.; Oikawa, A.; Suzuki, H.; Sakurai, N.; Shibata, D.; Wadano, A.; Sakata, K.; Ohta, D. Plant Cell 2006, 18, 1008–1022. doi:10.1105/tpc.105.036012 |
35. | Christ, B.; Xu, C.; Xu, M.; Li, F.-S.; Wada, N.; Mitchell, A. J.; Han, X.-L.; Wen, M.-L.; Fujita, M.; Weng, J.-K. Nat. Commun. 2019, 10, 3206. doi:10.1038/s41467-019-11286-7 |
64. | Augustin, M. M.; Ruzicka, D. R.; Shukla, A. K.; Augustin, J. M.; Starks, C. M.; O'Neil‐Johnson, M.; McKain, M. R.; Evans, B. S.; Barrett, M. D.; Smithson, A.; Wong, G. K.-S.; Deyholos, M. K.; Edger, P. P.; Pires, J. C.; Leebens‐Mack, J. H.; Mann, D. A.; Kutchan, T. M. Plant J. 2015, 82, 991–1003. doi:10.1111/tpj.12871 |
35. | Christ, B.; Xu, C.; Xu, M.; Li, F.-S.; Wada, N.; Mitchell, A. J.; Han, X.-L.; Wen, M.-L.; Fujita, M.; Weng, J.-K. Nat. Commun. 2019, 10, 3206. doi:10.1038/s41467-019-11286-7 |
66. | Zhou, C.; Yang, Y.; Tian, J.; Wu, Y.; An, F.; Li, C.; Zhang, Y. Plant J. 2022, 109, 940–951. doi:10.1111/tpj.15604 |
64. | Augustin, M. M.; Ruzicka, D. R.; Shukla, A. K.; Augustin, J. M.; Starks, C. M.; O'Neil‐Johnson, M.; McKain, M. R.; Evans, B. S.; Barrett, M. D.; Smithson, A.; Wong, G. K.-S.; Deyholos, M. K.; Edger, P. P.; Pires, J. C.; Leebens‐Mack, J. H.; Mann, D. A.; Kutchan, T. M. Plant J. 2015, 82, 991–1003. doi:10.1111/tpj.12871 |
69. | Dong, L.; Almeida, A.; Pollier, J.; Khakimov, B.; Bassard, J.-E.; Miettinen, K.; Stærk, D.; Mehran, R.; Olsen, C. E.; Motawia, M. S.; Goossens, A.; Bak, S. Mol. Biol. Evol. 2021, 38, 4659–4673. doi:10.1093/molbev/msab213 |
66. | Zhou, C.; Yang, Y.; Tian, J.; Wu, Y.; An, F.; Li, C.; Zhang, Y. Plant J. 2022, 109, 940–951. doi:10.1111/tpj.15604 |
68. | Sakamoto, T.; Ohnishi, T.; Fujioka, S.; Watanabe, B.; Mizutani, M. Plant Physiol. Biochem. 2012, 58, 220–226. doi:10.1016/j.plaphy.2012.07.011 |
68. | Sakamoto, T.; Ohnishi, T.; Fujioka, S.; Watanabe, B.; Mizutani, M. Plant Physiol. Biochem. 2012, 58, 220–226. doi:10.1016/j.plaphy.2012.07.011 |
64. | Augustin, M. M.; Ruzicka, D. R.; Shukla, A. K.; Augustin, J. M.; Starks, C. M.; O'Neil‐Johnson, M.; McKain, M. R.; Evans, B. S.; Barrett, M. D.; Smithson, A.; Wong, G. K.-S.; Deyholos, M. K.; Edger, P. P.; Pires, J. C.; Leebens‐Mack, J. H.; Mann, D. A.; Kutchan, T. M. Plant J. 2015, 82, 991–1003. doi:10.1111/tpj.12871 |
64. | Augustin, M. M.; Ruzicka, D. R.; Shukla, A. K.; Augustin, J. M.; Starks, C. M.; O'Neil‐Johnson, M.; McKain, M. R.; Evans, B. S.; Barrett, M. D.; Smithson, A.; Wong, G. K.-S.; Deyholos, M. K.; Edger, P. P.; Pires, J. C.; Leebens‐Mack, J. H.; Mann, D. A.; Kutchan, T. M. Plant J. 2015, 82, 991–1003. doi:10.1111/tpj.12871 |
67. | Ohnishi, T.; Szatmari, A.-M.; Watanabe, B.; Fujita, S.; Bancos, S.; Koncz, C.; Lafos, M.; Shibata, K.; Yokota, T.; Sakata, K.; Szekeres, M.; Mizutani, M. Plant Cell 2006, 18, 3275–3288. doi:10.1105/tpc.106.045443 |
69. | Dong, L.; Almeida, A.; Pollier, J.; Khakimov, B.; Bassard, J.-E.; Miettinen, K.; Stærk, D.; Mehran, R.; Olsen, C. E.; Motawia, M. S.; Goossens, A.; Bak, S. Mol. Biol. Evol. 2021, 38, 4659–4673. doi:10.1093/molbev/msab213 |
73. | Fukushima, E. O.; Seki, H.; Ohyama, K.; Ono, E.; Umemoto, N.; Mizutani, M.; Saito, K.; Muranaka, T. Plant Cell Physiol. 2011, 52, 2050–2061. doi:10.1093/pcp/pcr146 |
73. | Fukushima, E. O.; Seki, H.; Ohyama, K.; Ono, E.; Umemoto, N.; Mizutani, M.; Saito, K.; Muranaka, T. Plant Cell Physiol. 2011, 52, 2050–2061. doi:10.1093/pcp/pcr146 |
74. | Yasumoto, S.; Seki, H.; Shimizu, Y.; Fukushima, E. O.; Muranaka, T. Front. Plant Sci. 2017, 8, 21. doi:10.3389/fpls.2017.00021 |
74. | Yasumoto, S.; Seki, H.; Shimizu, Y.; Fukushima, E. O.; Muranaka, T. Front. Plant Sci. 2017, 8, 21. doi:10.3389/fpls.2017.00021 |
1. | Qi, X.; Bakht, S.; Qin, B.; Leggett, M.; Hemmings, A.; Mellon, F.; Eagles, J.; Werck-Reichhart, D.; Schaller, H.; Lesot, A.; Melton, R.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 18848–18853. doi:10.1073/pnas.0607849103 |
70. | Yasumoto, S.; Fukushima, E. O.; Seki, H.; Muranaka, T. FEBS Lett. 2016, 590, 533–540. doi:10.1002/1873-3468.12074 |
70. | Yasumoto, S.; Fukushima, E. O.; Seki, H.; Muranaka, T. FEBS Lett. 2016, 590, 533–540. doi:10.1002/1873-3468.12074 |
72. | Moses, T.; Pollier, J.; Shen, Q.; Soetaert, S.; Reed, J.; Erffelinck, M.-L.; Van Nieuwerburgh, F. C. W.; Vanden Bossche, R.; Osbourn, A.; Thevelein, J. M.; Deforce, D.; Tang, K.; Goossens, A. Plant Cell 2015, 27, 286–301. doi:10.1105/tpc.114.134486 |
71. | Carelli, M.; Biazzi, E.; Panara, F.; Tava, A.; Scaramelli, L.; Porceddu, A.; Graham, N.; Odoardi, M.; Piano, E.; Arcioni, S.; May, S.; Scotti, C.; Calderini, O. Plant Cell 2011, 23, 3070–3081. doi:10.1105/tpc.111.087312 |
5. | Thimmappa, R.; Geisler, K.; Louveau, T.; O'Maille, P.; Osbourn, A. Annu. Rev. Plant Biol. 2014, 65, 225–257. doi:10.1146/annurev-arplant-050312-120229 |
4. | Xiong, J.; Kashiwada, Y.; Chen, C.-H.; Qian, K.; Morris-Natschke, S. L.; Lee, K.-H.; Takaishi, Y. Bioorg. Med. Chem. 2010, 18, 6451–6469. doi:10.1016/j.bmc.2010.06.092 |
3. | Zhang, M.; Sun, X.; Ren, R.; Su, L.; Xu, M.; Zheng, L.; Li, H. Phytochem. Lett. 2022, 49, 145–151. doi:10.1016/j.phytol.2022.03.020 |
41. | Field, B.; Osbourn, A. E. Science 2008, 320, 543–547. doi:10.1126/science.1154990 |
69. | Dong, L.; Almeida, A.; Pollier, J.; Khakimov, B.; Bassard, J.-E.; Miettinen, K.; Stærk, D.; Mehran, R.; Olsen, C. E.; Motawia, M. S.; Goossens, A.; Bak, S. Mol. Biol. Evol. 2021, 38, 4659–4673. doi:10.1093/molbev/msab213 |
6. | Nelson, D.; Werck-Reichhart, D. Plant J. 2011, 66, 194–211. doi:10.1111/j.1365-313x.2011.04529.x |
8. | Nguyen, T.-D.; Dang, T.-T. T. Front. Plant Sci. 2021, 12, 682181. doi:10.3389/fpls.2021.682181 |
9. | Bathe, U.; Tissier, A. Phytochemistry 2019, 161, 149–162. doi:10.1016/j.phytochem.2018.12.003 |
10. | Zhang, Y.; Ma, L.; Su, P.; Huang, L.; Gao, W. Crit. Rev. Biotechnol. 2021, 1–21. doi:10.1080/07388551.2021.2003292 |
11. | Mizutani, M.; Sato, F. Arch. Biochem. Biophys. 2011, 507, 194–203. doi:10.1016/j.abb.2010.09.026 |
12. | Miettinen, K.; Iñigo, S.; Kreft, L.; Pollier, J.; De Bo, C.; Botzki, A.; Coppens, F.; Bak, S.; Goossens, A. Nucleic Acids Res. 2018, 46, D586–D594. doi:10.1093/nar/gkx925 |
13. | Shang, Y.; Huang, S. Plant J. 2019, 97, 101–111. doi:10.1111/tpj.14132 |
6. | Nelson, D.; Werck-Reichhart, D. Plant J. 2011, 66, 194–211. doi:10.1111/j.1365-313x.2011.04529.x |
79. | Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P. D.; Pauwels, L.; Aharoni, A.; Martins, J.; Nelson, D. R.; Goossens, A. Nat. Commun. 2017, 8, 14153. doi:10.1038/ncomms14153 |
79. | Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P. D.; Pauwels, L.; Aharoni, A.; Martins, J.; Nelson, D. R.; Goossens, A. Nat. Commun. 2017, 8, 14153. doi:10.1038/ncomms14153 |
50. | Han, J. Y.; Chun, J.-H.; Oh, S. A.; Park, S.-B.; Hwang, H.-S.; Lee, H.; Choi, Y. E. Plant Cell Physiol. 2018, 59, 319–330. doi:10.1093/pcp/pcx188 |
77. | Fiallos-Jurado, J.; Pollier, J.; Moses, T.; Arendt, P.; Barriga-Medina, N.; Morillo, E.; Arahana, V.; de Lourdes Torres, M.; Goossens, A.; Leon-Reyes, A. Plant Sci. 2016, 250, 188–197. doi:10.1016/j.plantsci.2016.05.015 |
77. | Fiallos-Jurado, J.; Pollier, J.; Moses, T.; Arendt, P.; Barriga-Medina, N.; Morillo, E.; Arahana, V.; de Lourdes Torres, M.; Goossens, A.; Leon-Reyes, A. Plant Sci. 2016, 250, 188–197. doi:10.1016/j.plantsci.2016.05.015 |
78. | Khakimov, B.; Kuzina, V.; Erthmann, P. Ø.; Fukushima, E. O.; Augustin, J. M.; Olsen, C. E.; Scholtalbers, J.; Volpin, H.; Andersen, S. B.; Hauser, T. P.; Muranaka, T.; Bak, S. Plant J. 2015, 84, 478–490. doi:10.1111/tpj.13012 |
78. | Khakimov, B.; Kuzina, V.; Erthmann, P. Ø.; Fukushima, E. O.; Augustin, J. M.; Olsen, C. E.; Scholtalbers, J.; Volpin, H.; Andersen, S. B.; Hauser, T. P.; Muranaka, T.; Bak, S. Plant J. 2015, 84, 478–490. doi:10.1111/tpj.13012 |
75. | Suzuki, H.; Fukushima, E. O.; Shimizu, Y.; Seki, H.; Fujisawa, Y.; Ishimoto, M.; Osakabe, K.; Osakabe, Y.; Muranaka, T. Plant Cell Physiol. 2019, 60, 2496–2509. doi:10.1093/pcp/pcz145 |
59. | Moses, T.; Pollier, J.; Faizal, A.; Apers, S.; Pieters, L.; Thevelein, J. M.; Geelen, D.; Goossens, A. Mol. Plant 2015, 8, 122–135. doi:10.1016/j.molp.2014.11.004 |
76. | Han, J.-Y.; Hwang, H.-S.; Choi, S.-W.; Kim, H.-J.; Choi, Y.-E. Plant Cell Physiol. 2012, 53, 1535–1545. doi:10.1093/pcp/pcs106 |
29. | Hodgson, H.; De La Peña, R.; Stephenson, M. J.; Thimmappa, R.; Vincent, J. L.; Sattely, E. S.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 17096–17104. doi:10.1073/pnas.1906083116 |
30. | Krokida, A.; Delis, C.; Geisler, K.; Garagounis, C.; Tsikou, D.; Peña‐Rodríguez, L. M.; Katsarou, D.; Field, B.; Osbourn, A. E.; Papadopoulou, K. K. New Phytol. 2013, 200, 675–690. doi:10.1111/nph.12414 |
31. | Tsukagoshi, Y.; Ohyama, K.; Seki, H.; Akashi, T.; Muranaka, T.; Suzuki, H.; Fujimoto, Y. Phytochemistry 2016, 127, 23–28. doi:10.1016/j.phytochem.2016.03.010 |
38. | Moses, T.; Pollier, J.; Almagro, L.; Buyst, D.; Van Montagu, M.; Pedreño, M. A.; Martins, J. C.; Thevelein, J. M.; Goossens, A. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 1634–1639. doi:10.1073/pnas.1323369111 |
39. | Seki, H.; Ohyama, K.; Sawai, S.; Mizutani, M.; Ohnishi, T.; Sudo, H.; Akashi, T.; Aoki, T.; Saito, K.; Muranaka, T. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 14204–14209. doi:10.1073/pnas.0803876105 |
36. | Li, L.; Lin, S.; Chen, Y.; Wang, Y.; Xiao, L.; Ye, X.; Sun, L.; Zhan, R.; Xu, H. Front. Plant Sci. 2022, 13, 831401. doi:10.3389/fpls.2022.831401 |
37. | Shibuya, M.; Hoshino, M.; Katsube, Y.; Hayashi, H.; Kushiro, T.; Ebizuka, Y. FEBS J. 2006, 273, 948–959. doi:10.1111/j.1742-4658.2006.05120.x |
34. | Zhou, Y.; Ma, Y.; Zeng, J.; Duan, L.; Xue, X.; Wang, H.; Lin, T.; Liu, Z.; Zeng, K.; Zhong, Y.; Zhang, S.; Hu, Q.; Liu, M.; Zhang, H.; Reed, J.; Moses, T.; Liu, X.; Huang, P.; Qing, Z.; Liu, X.; Tu, P.; Kuang, H.; Zhang, Z.; Osbourn, A.; Ro, D.-K.; Shang, Y.; Huang, S. Nat. Plants (London, U. K.) 2016, 2, 16183. doi:10.1038/nplants.2016.183 |
35. | Christ, B.; Xu, C.; Xu, M.; Li, F.-S.; Wada, N.; Mitchell, A. J.; Han, X.-L.; Wen, M.-L.; Fujita, M.; Weng, J.-K. Nat. Commun. 2019, 10, 3206. doi:10.1038/s41467-019-11286-7 |
32. | Takase, S.; Kera, K.; Nagashima, Y.; Mannen, K.; Hosouchi, T.; Shinpo, S.; Kawashima, M.; Kotake, Y.; Yamada, H.; Saga, Y.; Otaka, J.; Araya, H.; Kotera, M.; Suzuki, H.; Kushiro, T. J. Biol. Chem. 2019, 294, 18662–18673. doi:10.1074/jbc.ra119.009944 |
33. | Shang, Y.; Ma, Y.; Zhou, Y.; Zhang, H.; Duan, L.; Chen, H.; Zeng, J.; Zhou, Q.; Wang, S.; Gu, W.; Liu, M.; Ren, J.; Gu, X.; Zhang, S.; Wang, Y.; Yasukawa, K.; Bouwmeester, H. J.; Qi, X.; Zhang, Z.; Lucas, W. J.; Huang, S. Science 2014, 346, 1084–1088. doi:10.1126/science.1259215 |
40. | Moses, T.; Thevelein, J. M.; Goossens, A.; Pollier, J. Phytochemistry 2014, 108, 47–56. doi:10.1016/j.phytochem.2014.10.002 |
40. | Moses, T.; Thevelein, J. M.; Goossens, A.; Pollier, J. Phytochemistry 2014, 108, 47–56. doi:10.1016/j.phytochem.2014.10.002 |
40. | Moses, T.; Thevelein, J. M.; Goossens, A.; Pollier, J. Phytochemistry 2014, 108, 47–56. doi:10.1016/j.phytochem.2014.10.002 |
42. | Hansen, N. L.; Miettinen, K.; Zhao, Y.; Ignea, C.; Andreadelli, A.; Raadam, M. H.; Makris, A. M.; Møller, B. L.; Stærk, D.; Bak, S.; Kampranis, S. C. Microb. Cell Fact. 2020, 19, 15. doi:10.1186/s12934-020-1284-9 |
42. | Hansen, N. L.; Miettinen, K.; Zhao, Y.; Ignea, C.; Andreadelli, A.; Raadam, M. H.; Makris, A. M.; Møller, B. L.; Stærk, D.; Bak, S.; Kampranis, S. C. Microb. Cell Fact. 2020, 19, 15. doi:10.1186/s12934-020-1284-9 |
41. | Field, B.; Osbourn, A. E. Science 2008, 320, 543–547. doi:10.1126/science.1154990 |
42. | Hansen, N. L.; Miettinen, K.; Zhao, Y.; Ignea, C.; Andreadelli, A.; Raadam, M. H.; Makris, A. M.; Møller, B. L.; Stærk, D.; Bak, S.; Kampranis, S. C. Microb. Cell Fact. 2020, 19, 15. doi:10.1186/s12934-020-1284-9 |
40. | Moses, T.; Thevelein, J. M.; Goossens, A.; Pollier, J. Phytochemistry 2014, 108, 47–56. doi:10.1016/j.phytochem.2014.10.002 |
28. | Castillo, D. A.; Kolesnikova, M. D.; Matsuda, S. P. T. J. Am. Chem. Soc. 2013, 135, 5885–5894. doi:10.1021/ja401535g |
40. | Moses, T.; Thevelein, J. M.; Goossens, A.; Pollier, J. Phytochemistry 2014, 108, 47–56. doi:10.1016/j.phytochem.2014.10.002 |
40. | Moses, T.; Thevelein, J. M.; Goossens, A.; Pollier, J. Phytochemistry 2014, 108, 47–56. doi:10.1016/j.phytochem.2014.10.002 |
22. | Chen, C.-C.; Min, J.; Zhang, L.; Yang, Y.; Yu, X.; Guo, R.-T. ChemBioChem 2021, 22, 1317–1328. doi:10.1002/cbic.202000705 |
18. | Poulos, T. L. Chem. Rev. 2014, 114, 3919–3962. doi:10.1021/cr400415k |
23. | Ortiz de Montellano, P. R. Substrate Oxidation by Cytochrome P450 Enzyme. In Cytochrome P450: Structure, Mechanism, and Biochemistry; Ortiz de Montellano, P. R., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp 111–176. doi:10.1007/978-3-319-12108-6_4 |
17. | Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947–3980. doi:10.1021/cr020443g |
17. | Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947–3980. doi:10.1021/cr020443g |
15. | Hansen, C. C.; Nelson, D. R.; Møller, B. L.; Werck-Reichhart, D. Mol. Plant 2021, 14, 1244–1265. doi:10.1016/j.molp.2021.06.028 |
16. | Nelson, D. R. Cytochrome P450 Nomenclature, 2004. In Cytochrome P450 Protocols; Phillips, I. R.; Shephard, E. A., Eds.; Methods in Molecular Biology; Humana Press: Totowa, NJ, USA, 2006; pp 1–10. doi:10.1385/1-59259-998-2:1 |
17. | Meunier, B.; de Visser, S. P.; Shaik, S. Chem. Rev. 2004, 104, 3947–3980. doi:10.1021/cr020443g |
18. | Poulos, T. L. Chem. Rev. 2014, 114, 3919–3962. doi:10.1021/cr400415k |
19. | Guengerich, F. P. ACS Catal. 2018, 8, 10964–10976. doi:10.1021/acscatal.8b03401 |
20. | Rittle, J.; Green, M. T. Science 2010, 330, 933–937. doi:10.1126/science.1193478 |
21. | Dubey, K. D.; Shaik, S. Acc. Chem. Res. 2019, 52, 389–399. doi:10.1021/acs.accounts.8b00467 |
14. | Bak, S.; Beisson, F.; Bishop, G.; Hamberger, B.; Höfer, R.; Paquette, S.; Werck-Reichhart, D. Arabidopsis Book 2011, 9, e0144. doi:10.1199/tab.0144 |
25. | Kushiro, M.; Nakano, T.; Sato, K.; Yamagishi, K.; Asami, T.; Nakano, A.; Takatsuto, S.; Fujioka, S.; Ebizuka, Y.; Yoshida, S. Biochem. Biophys. Res. Commun. 2001, 285, 98–104. doi:10.1006/bbrc.2001.5122 |
8. | Nguyen, T.-D.; Dang, T.-T. T. Front. Plant Sci. 2021, 12, 682181. doi:10.3389/fpls.2021.682181 |
11. | Mizutani, M.; Sato, F. Arch. Biochem. Biophys. 2011, 507, 194–203. doi:10.1016/j.abb.2010.09.026 |
24. | Bak, S.; Kahn, R. A.; Olsen, C. E.; Halkier, B. A. Plant J. 1997, 11, 191–201. doi:10.1046/j.1365-313x.1997.11020191.x |
29. | Hodgson, H.; De La Peña, R.; Stephenson, M. J.; Thimmappa, R.; Vincent, J. L.; Sattely, E. S.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 17096–17104. doi:10.1073/pnas.1906083116 |
29. | Hodgson, H.; De La Peña, R.; Stephenson, M. J.; Thimmappa, R.; Vincent, J. L.; Sattely, E. S.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 17096–17104. doi:10.1073/pnas.1906083116 |
105. | Pandreka, A.; Chaya, P. S.; Kumar, A.; Aarthy, T.; Mulani, F. A.; Bhagyashree, D. D.; B, S. H.; Jennifer, C.; Ponnusamy, S.; Nagegowda, D.; Thulasiram, H. V. Phytochemistry 2021, 184, 112669. doi:10.1016/j.phytochem.2021.112669 |
106. | Lian, X.; Zhang, X.; Wang, F.; Wang, X.; Xue, Z.; Qi, X. Physiol. Plant. 2020, 170, 528–536. doi:10.1111/ppl.13189 |
107. | Chuang, L.; Liu, S.; Biedermann, D.; Franke, J. Front. Plant Sci. 2022, 13, 958138. doi:10.3389/fpls.2022.958138 |
108. | Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Nature 2021, 1–11. doi:10.1038/s41586-021-03819-2 |
15. | Hansen, C. C.; Nelson, D. R.; Møller, B. L.; Werck-Reichhart, D. Mol. Plant 2021, 14, 1244–1265. doi:10.1016/j.molp.2021.06.028 |
26. | Polturak, G.; Dippe, M.; Stephenson, M. J.; Chandra Misra, R.; Owen, C.; Ramirez-Gonzalez, R. H.; Haidoulis, J. F.; Schoonbeek, H.-J.; Chartrain, L.; Borrill, P.; Nelson, D. R.; Brown, J. K. M.; Nicholson, P.; Uauy, C.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2123299119. doi:10.1073/pnas.2123299119 |
79. | Miettinen, K.; Pollier, J.; Buyst, D.; Arendt, P.; Csuk, R.; Sommerwerk, S.; Moses, T.; Mertens, J.; Sonawane, P. D.; Pauwels, L.; Aharoni, A.; Martins, J.; Nelson, D. R.; Goossens, A. Nat. Commun. 2017, 8, 14153. doi:10.1038/ncomms14153 |
27. | Field, B.; Fiston-Lavier, A.-S.; Kemen, A.; Geisler, K.; Quesneville, H.; Osbourn, A. E. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 16116–16121. doi:10.1073/pnas.1109273108 |
28. | Castillo, D. A.; Kolesnikova, M. D.; Matsuda, S. P. T. J. Am. Chem. Soc. 2013, 135, 5885–5894. doi:10.1021/ja401535g |
29. | Hodgson, H.; De La Peña, R.; Stephenson, M. J.; Thimmappa, R.; Vincent, J. L.; Sattely, E. S.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 17096–17104. doi:10.1073/pnas.1906083116 |
26. | Polturak, G.; Dippe, M.; Stephenson, M. J.; Chandra Misra, R.; Owen, C.; Ramirez-Gonzalez, R. H.; Haidoulis, J. F.; Schoonbeek, H.-J.; Chartrain, L.; Borrill, P.; Nelson, D. R.; Brown, J. K. M.; Nicholson, P.; Uauy, C.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2123299119. doi:10.1073/pnas.2123299119 |
26. | Polturak, G.; Dippe, M.; Stephenson, M. J.; Chandra Misra, R.; Owen, C.; Ramirez-Gonzalez, R. H.; Haidoulis, J. F.; Schoonbeek, H.-J.; Chartrain, L.; Borrill, P.; Nelson, D. R.; Brown, J. K. M.; Nicholson, P.; Uauy, C.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2123299119. doi:10.1073/pnas.2123299119 |
26. | Polturak, G.; Dippe, M.; Stephenson, M. J.; Chandra Misra, R.; Owen, C.; Ramirez-Gonzalez, R. H.; Haidoulis, J. F.; Schoonbeek, H.-J.; Chartrain, L.; Borrill, P.; Nelson, D. R.; Brown, J. K. M.; Nicholson, P.; Uauy, C.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2123299119. doi:10.1073/pnas.2123299119 |
26. | Polturak, G.; Dippe, M.; Stephenson, M. J.; Chandra Misra, R.; Owen, C.; Ramirez-Gonzalez, R. H.; Haidoulis, J. F.; Schoonbeek, H.-J.; Chartrain, L.; Borrill, P.; Nelson, D. R.; Brown, J. K. M.; Nicholson, P.; Uauy, C.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2123299119. doi:10.1073/pnas.2123299119 |
1. | Qi, X.; Bakht, S.; Qin, B.; Leggett, M.; Hemmings, A.; Mellon, F.; Eagles, J.; Werck-Reichhart, D.; Schaller, H.; Lesot, A.; Melton, R.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 18848–18853. doi:10.1073/pnas.0607849103 |
26. | Polturak, G.; Dippe, M.; Stephenson, M. J.; Chandra Misra, R.; Owen, C.; Ramirez-Gonzalez, R. H.; Haidoulis, J. F.; Schoonbeek, H.-J.; Chartrain, L.; Borrill, P.; Nelson, D. R.; Brown, J. K. M.; Nicholson, P.; Uauy, C.; Osbourn, A. Proc. Natl. Acad. Sci. U. S. A. 2022, 119, e2123299119. doi:10.1073/pnas.2123299119 |
© 2022 Malhotra and Franke; licensee Beilstein-Institut.
This is an open access article licensed under the terms of the Beilstein-Institut Open Access License Agreement (https://www.beilstein-journals.org/bjoc/terms), which is identical to the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0). The reuse of material under this license requires that the author(s), source and license are credited. Third-party material in this article could be subject to other licenses (typically indicated in the credit line), and in this case, users are required to obtain permission from the license holder to reuse the material.