Abstract
Exhaustive Michael-type alkylations of amines and ammonia with azoalkenes (generated from α-halohydrazones) were demonstrated as an efficient approach to poly(hydrazonomethyl)amines – a novel class of polynitrogen ligands. An intramolecular cyclotrimerization of C=N bonds in tris(hydrazonomethyl)amine to the respective 1,4,6,10-tetraazaadamantane derivative was demonstrated.
Introduction
Hydrazones are extensively used as key structural units in the design of various functional molecular and supramolecular architectures [1-17]. The hydrazone group is a chemically stable, easily assembled motif with prospective coordination properties, which can be tuned by substitution at the carbon and nitrogen atoms. Furthermore, a reversible E/Z-isomerism of the C=N bond allows controllable modulation of the molecular geometry, for example through coordination with metal cations, hydrogen bond formation or irradiation. These unique structural features of the hydrazone fragment have been successfully exploited in the design of various molecular switches, fluorophores and machines.
Bis- and polyhydrazones exhibit a rich coordination chemistry owing to a variety of binding modes and are widely employed as ligands in metal-organic assemblies, sensors and catalytic systems [1-17]. More complex structures containing several hydrazone groups integrated with functional fragments upon coordination with metals can undergo significant changes in molecular shape and aggregation state that can be used in the design of smart adaptive materials [1,2]. Some important bis- and trishydrazone ligands used in catalysis, coordination and supramolecular chemistry are shown in Figure 1.
Despite complex and sophisticated polyhydrazone ligands have been designed in the last decade, more structurally simple poly(hydrazonomethyl)amines of type I (Scheme 1), which are analogs of well-known poly(oximinomethyl)amine and poly(azolylmethyl)amine ligands [18-34], have not been prepared so far. In the present work, we focused on the development of a general approach to tertiary amines and polyamines bearing several hydrazonomethyl arms at the nitrogen atom(s). To achieve this goal, we suggested a straightforward methodology based on multiple Michael-type additions of azoalkenes A (generated from α-halogen azacarbonyl precursor 1 [35-39]) to amines or ammonia (Scheme 1).
Though the chemistry and synthetic potential azoalkenes A have been a subject of considerable interest in the recent years [38,39], their reactivity with amines is poorly explored. It has been demonstrated that amines react with azoalkenes A forming α-aminohydrazones (Scheme 1) [35-49], however, addition of several azoalkene molecules to amines is virtually unknown. To our knowledge, there is only one report on the formation of bishydrazones as undesirable products in reactions of some primary amines with N-tosylhydrazone of o-bromophenacyl bromide [50]. We suppose that extension of the scope of azoalkene–amine coupling to ammonia, primary amines and polyamines would open an easy access to various polyhydrazones of type I. Therefore, a comprehensive study on the interaction of various amines with α-halogen-substituted hydrazones 1 with amines and ammonia was undertaken.
Results and Discussion
Synthesis of α-halogen-substituted hydrazones 1
Initially, α-halogen-substituted hydrazones 1 were prepared from the corresponding carbonyl compounds and acylhydrazines or carbazates to study the reaction with amines (Scheme 2, for details see Supporting Information File 1). Acetic acid was added as catalyst and for suppression of the side reaction of the formed α-halogen hydrazones with starting hydrazide [51]. The presence of acetic acid and mild reaction conditions (0 °C) was essential for the synthesis of hydrazones 1c and 1d (R1 = CH3, R2 = CH3 or (CH2)6CH3), probably because of the their enhanced NH-acidity.
Reaction of α-halogen hydrazones 1 with benzylamine
In our initial studies, benzylamine was chosen as model amine in reactions with α-halogen-substituted hydrazones 1. After brief optimization of the reaction conditions (solvent, base and ratio of reagents), it was found that alkylation of benzylamine with 2.0 equiv of Boc-hydrazone 1a and 2.0 equiv of potassium carbonate as a base in MeOH led to bishydrazone 2a in highest yield. The bright yellow color appeared in course of reagents mixing indicating the formation of azoalkene intermediate A [35-39]. Under these conditions, a range of other α-halogen hydrazones 1b–d,f,g were successfully converted to corresponding bishydrazones 2b–d,f,g in good to high yields (Table 1). In case of 1e, bearing a benzoyl group, the formation of a complex mixture was observed and target product 2e was not isolable (Table 1, entry 5).
Table 1: Reaction of α-halogen-substituted hydrazones 1 with benzylamine.
Entry | 1 | 2 | R1 | R2 | Yield, %a |
---|---|---|---|---|---|
1 | a | a | CH3 | Ot-Bu | 92 |
2 | b | b | CH3 | OEt | 87 |
3 | c | c | CH3 | CH3 | 84 |
4 | d | d | CH3 | (CH2)6CH3 | 76 |
5 | e | e | CH3 | Ph | –b |
6 | f | f | Ph | Ot-Bu | 82 |
7 | g | g | CO2Et | Ot-Bu | 66 |
aIsolated yields. bComplex mixture of products.
Variation of the amine component in the reaction with chloroacetone hydrazone 1a
The suggested reaction conditions were successfully extended to a range of primary and secondary amines providing corresponding polyhydrazones 3–9 (Figure 2).
Thus, propargylamine and (L)-valine methyl ester (generated in situ from the corresponding hydrochloride and an additional equivalent of potassium carbonate) in the reaction with two equivalents of chloroacetone hydrazone 1a provided the corresponding functionalized bishydrazones 3 and 4 in good yields (method A in Figure 2). On the other hand, an aromatic amine (aniline) under the aforementioned conditions led to monohydrazone 5 as a major product. Even when a 3-fold excess of 1a was used, a mixture of mono- and bisadducts was obtained. This may be attributed to the reduced nucleophility of the secondary amino group in the primarily formed adduct 5. The reaction of aniline with 1.0 equiv of chlorohydrazone 1a gave 5 in 84% yield (method B in Figure 2). Similarly, the reaction with a secondary amine (morpholine) according to this procedure provided the monoalkylated adduct 6 in good yield.
Importantly, secondary polyamines could be exhaustively alkylated with chloroacetone hydrazone 1a demonstrating the efficiency of our approach for the synthesis of polyhydrazones. Thus, treatment of macrocyclic polyamines tacn (1,4,7-triazacyclononane), tacd (1,5,9-triazacyclododecane) and cyclam (1,4,8,11-tetraazacyclotetradecane) with 1a gave the corresponding tris- and tetra-hydrazones 7, 8 and 9, respectively, in high yields (methods C,D in Figure 2, a small excess of 1a was used to ensure complete alkylation). Macrocyclic polynitrogen ligands with several hydrazone arms may be of interest for the design of sensors [52] and contrast agents [53].
Unfortunately, alkylation of ethylenediamine with 4 equivalents of 1a led to an indecipherable mixture of products. In this case, the primary alkylation adducts might be unstable and undergo heterocyclization reactions (on the synthesis of heterocyclic compounds from azoalkenes and diamines see [54-56]).
Bishydrazones containing clickable groups (like 3) can be introduced into functional molecules or immobilized on a support. This was demonstrated by the synthesis of a mixed triazole-hydrazone ligand 10 by CuAAC reaction of 3 with phenyl azide (Scheme 3) (for application of mixed triazole-imine ligands see [31,32,34]).
Reaction of α-halogen-substituted hydrazones 1 with ammonia
Addition of α-halohydrazones 1 to ammonia (Table 2) have a special significance because the expected trishydrazones 11 are obvious analogs of tris(iminomethyl)amines widely used in the catalysis of azide–alkyne cycloadditions [29-32,34]. Furthermore, intramolecular cyclotrimerization of C=N bonds in trishydrozones would lead to unusual 1,4,6,10-tertraazaadamantane derivatives (vide infra) [57-60].
Table 2: Synthesis of trishydrazones 11.
Entry | 1 | 11 | R1 | R2 | Yield, % |
---|---|---|---|---|---|
1 | a | a | CH3 | Ot-Bu | 83 |
2 | b | b | CH3 | OEt | 46 |
3 | d | d | CH3 | (CH2)6CH3 | 73 |
4 | f | f | Ph | Ot-Bu | 65a |
5 | h | h | H | Ot-Bu | 66b |
aSecondary amine HN(CH2C(=N-NHBoc)Ph)2 12f was also isolated in 24% yield. bYield on two steps from BocNHNH2.
The treatment of model hydrazone 1a in MeOH with an excess of aqueous ammonia led to the desired trishydrazone 11a without the formation of corresponding primary and secondary amines or quaternary ammonium salts (Table 2, entry 1). Other hydrazones of α-haloketones 1b,d,f and the hydrazone of chloroacetaldehyde 1h were successfully involved in the reaction with ammonia providing the corresponding trishydrazones 11b,d,f–h in moderate to good yields (Table 2). In the case of phenyl-substituted hydrazone 1f, a bis-adduct 12f was obtained in addition to trishydrazone 11f (Table 2, entry 4).
Cyclization of trishydrazones 11
Upon treatment with acetic acid, trishydrazone 11b underwent a remarkable transformation to the tetraazaadamantane derivative 13b via intramolecular cyclotrimerization of C=N bonds (Scheme 4). A similar reaction leading to N-hydroxy-substituted 1,4,6,10-tetraazadamantanes was recently observed by us for trisoximes [57-60]. However, 1,4,6,10-tetraazaadamantanes with three N-amino groups are not accessible by the previously reported method from trisoximes [57-59]. Tetraazaadamantane with this substitution pattern is a promising platform for the design of supramolecular recognizing systems and for the construction of new molecular cage architectures.
The formation of the 1,4,6,10-tetraazaadamantane cage was unambiguously confirmed by X-ray analysis of the crystal solvate of 13b with water and methanol (Figure 3) as well as by 1H and 13C NMR spectra.
Considering the reversible character of the imine cyclotrimerization [57,61], such a process may be viewed as a way to modulate the molecular geometry of trishydrazones bearing functional fragments at nitrogen atoms. Further studies of this remarkable cyclization are ongoing.
Structure and isomerism in hydrazones 2–12
All newly obtained hydrazones were 2–12 characterized by 1H, 13C NMR spectroscopy and HRMS data. Most of the hydrazones were obtained as mixtures of E/Z-isomers (see Supporting Information File 1). The ratio of isomers depends on the substitution pattern and solvent. For example, the E,E-isomer was predominant for 2a in DMSO-d6, while in CDCl3 E,Z-2a was the major isomer. The assignment of stereoisomers was performed using known correlations between the configuration of the C=N bond and the chemical shift of hydrogen and carbon atoms attached to it [62].
Conclusion
In conclusion, we developed a convenient approach for the synthesis of hitherto unknown poly(hydrazonomethyl)amines I from α-haloketones, hydrazides and simple amines (ammonia). Using this combinatorial approach, a series of new prospective bis-, tris- and tetrahydrazone ligands were prepared. Trishydrazone 11b was shown to undergo an intramolecular cyclotrimerization of the C=N bonds resulting in the formation of the respective N-amino-substituted 1,4,6,10-tetraazaadamantane derivative. Further studies of coordination chemistry aspects of poly(hydrazonomethyl)amines I and their applications as ligands in transition metal catalysis are currently underway.
References
-
Su, X.; Aprahamian, I. Chem. Soc. Rev. 2014, 43, 1963–1981. doi:10.1039/c3cs60385g
Return to citation in text: [1] [2] [3] -
Tatum, L. A.; Su, X.; Aprahamian, I. Acc. Chem. Res. 2014, 47, 2141–2149. doi:10.1021/ar500111f
Return to citation in text: [1] [2] [3] -
Chandrasekhar, V.; Azhakar, R.; Bickley, J. F.; Steiner, A. Chem. Commun. 2005, 459–461. doi:10.1039/b414353a
Return to citation in text: [1] [2] -
Klein, J. M.; Saggiomo, V.; Reck, L.; McPartlin, M.; Dan Pantoş, G.; Lüning, U.; Sanders, J. K. M. Chem. Commun. 2011, 47, 3371–3373. doi:10.1039/c0cc04863a
Return to citation in text: [1] [2] -
Poolman, J. M.; Boekhoven, J.; Besselink, A.; Olive, A. G. L.; van Esch, J. H.; Eelkema, R. Nat. Protoc. 2014, 9, 977–988. doi:10.1038/nprot.2014.055
Return to citation in text: [1] [2] -
Stadler, A.-M.; Ramírez, J.; Lehn, J.-M.; Vincent, B. Chem. Sci. 2016, 7, 3689–3693. doi:10.1039/C5SC04403K
Return to citation in text: [1] [2] -
Buchs (née Levrand), B.; Fieber, W.; Vigouroux-Elie, F.; Sreenivasachary, N.; Lehn, J.-M.; Herrmann, A. Org. Biomol. Chem. 2011, 9, 2906–2916. doi:10.1039/C0OB01139H
Return to citation in text: [1] [2] -
Ratjen, L.; Lehn, J.-M. RSC Adv. 2014, 4, 50554–50557. doi:10.1039/C4RA11119B
Return to citation in text: [1] [2] -
Cao, X.-Y.; Harrowfield, J.; Nitschke, J.; Ramírez, J.; Stadler, A.-M.; Kyritsakas-Gruber, N.; Madalan, A.; Rissanen, K.; Russo, L.; Vaughan, G.; Lehn, J.-M. Eur. J. Inorg. Chem. 2007, 2944–2965. doi:10.1002/ejic.200700235
Return to citation in text: [1] [2] -
Chaur, M. N.; Collado, D.; Lehn, J.-M. Chem. – Eur. J. 2011, 17, 248–258. doi:10.1002/chem.201002308
Return to citation in text: [1] [2] -
Folmer-Andersen, J. F.; Lehn, J.-M. Angew. Chem., Int. Ed. 2009, 48, 7664–7667. doi:10.1002/anie.200902487
Return to citation in text: [1] [2] -
Folmer-Andersen, J. F.; Lehn, J.-M. J. Am. Chem. Soc. 2011, 133, 10966–10973. doi:10.1021/ja2035909
Return to citation in text: [1] [2] -
Pace, G.; Stefankiewicz, A.; Harrowfield, J.; Lehn, J.-M.; Samorì, P. ChemPhysChem 2009, 10, 699–705. doi:10.1002/cphc.200800733
Return to citation in text: [1] [2] -
Roy, N.; Buhler, E.; Lehn, J.-M. Polym. Int. 2014, 63, 1400–1405. doi:10.1002/pi.4646
Return to citation in text: [1] [2] -
Schaeffer, G.; Harrowfield, J. M.; Lehn, J.-M.; Hirsch, A. K. H. Polyhedron 2012, 41, 40–43. doi:10.1016/j.poly.2012.04.013
Return to citation in text: [1] [2] -
von Delius, M.; Geertsema, E. M.; Leigh, D. A. Nat. Chem. 2010, 2, 96–101. doi:10.1038/nchem.481
Return to citation in text: [1] [2] -
von Delius, M.; Geertsema, E. M.; Leigh, D. A.; Slawin, A. M. Z. Org. Biomol. Chem. 2010, 8, 4617–4624. doi:10.1039/c0ob00214c
Return to citation in text: [1] [2] -
Edison, S. E.; Hotz, R. P.; Baldwin, M. J. Chem. Commun. 2004, 1212–1213. doi:10.1039/b403668a
Return to citation in text: [1] -
Goldcamp, M. J.; Robison, S. E.; Krause Bauer, J. A.; Baldwin, M. J. Inorg. Chem. 2002, 41, 2307–2309. doi:10.1021/ic015590w
Return to citation in text: [1] -
Goldcamp, M. J.; Rosa, D. T.; Landers, N. A.; Mandel, S. M.; Krause Bauer, J. A.; Baldwin, M. J. Synthesis 2000, 2033–2038. doi:10.1055/s-2000-8724
Return to citation in text: [1] -
Goldcamp, M. J.; Edison, S. E.; Squires, L. N.; Rosa, D. T.; Vowels, N. K.; Coker, N. L.; Krause Bauer, J. A.; Baldwin, M. J. Inorg. Chem. 2003, 42, 717–728. doi:10.1021/ic025860q
Return to citation in text: [1] -
Semakin, A. N.; Sukhorukov, A. Yu.; Lesiv, A. V.; Khomutova, Y. A.; Ioffe, S. L.; Lyssenko, K. A. Synthesis 2007, 2862–2866. doi:10.1055/s-2007-983847
Return to citation in text: [1] -
Semakin, A. N.; Sukhorukov, A. Yu.; Ioffe, S. L.; Tartakovsky, V. A. Synthesis 2011, 1403–1412. doi:10.1055/s-0030-1259995
Return to citation in text: [1] -
Shalamova, E. A.; Lee, Y.; Chung, G.; Semakin, A. N.; Oh, J.; Sukhorukov, A. Yu.; Arkhipov, D. E.; Ioffe, S. L.; Semenov, S. E. Tetrahedron Lett. 2014, 55, 1222–1225. doi:10.1016/j.tetlet.2014.01.003
Return to citation in text: [1] -
Dorokhov, V. S.; Jung, H.; Kang, G.; Andreev, Y. A.; Semakin, A. N.; Oh, J.; Sukhorukov, A. Yu.; Ioffe, S. L.; Semenov, S. E. Synth. Commun. 2015, 45, 1362–1366. doi:10.1080/00397911.2015.1021424
Return to citation in text: [1] -
Boyko, Y. D.; Sukhorukov, A. Yu.; Semakin, A. N.; Nelyubina, Y. V.; Ananyev, I. V.; Rangappa, K. S.; Ioffe, S. L. Polyhedron 2014, 71, 24–33. doi:10.1016/j.poly.2014.01.003
Return to citation in text: [1] -
Premužić, D.; Muche, S.; Hołyńska, M. New J. Chem. 2014, 38, 2894–2901. doi:10.1039/C4NJ00194J
Return to citation in text: [1] -
Premužić, D.; Korabik, M.; Hołyńska, M. J. Mol. Struct. 2014, 1059, 265–270. doi:10.1016/j.molstruc.2013.12.001
Return to citation in text: [1] -
Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2853–2855. doi:10.1021/ol0493094
Return to citation in text: [1] [2] -
Rodionov, V. O.; Presolski, S.; Gardinier, S.; Lim, Y.-H.; Finn, M. G. J. Am. Chem. Soc. 2007, 129, 12696–12704. doi:10.1021/ja072678l
Return to citation in text: [1] [2] -
Presolski, S. I.; Hong, V.; Cho, S.-H.; Finn, M. G. J. Am. Chem. Soc. 2010, 132, 14570–14576. doi:10.1021/ja105743g
Return to citation in text: [1] [2] [3] -
Lewis, W. G.; Magallon, F. G.; Fokin, V. V.; Finn, M. G. J. Am. Chem. Soc. 2004, 126, 9152–9153. doi:10.1021/ja048425z
Return to citation in text: [1] [2] [3] -
Blackman, A. G. Polyhedron 2005, 24, 1–39. doi:10.1016/j.poly.2004.10.012
Return to citation in text: [1] -
Semakin, A. N.; Agababyan, D. P.; Kim, S.; Lee, S.; Sukhorukov, A. Yu.; Fedina, K. G.; Oh, J.; Ioffe, S. L. Tetrahedron Lett. 2015, 56, 6335–6339. doi:10.1016/j.tetlet.2015.09.106
Return to citation in text: [1] [2] [3] -
Attanasi, O. A.; Caglioti, L. Org. Prep. Proced. Int. 1986, 18, 299–327. doi:10.1080/00304948609356836
Return to citation in text: [1] [2] [3] -
Attanasi, O. A.; Filippone, P. Synlett 1997, 1128–1140. doi:10.1055/s-1997-973
Return to citation in text: [1] [2] [3] -
Attanasi, O. A.; De Crescenti, L.; Filippone, P.; Mantellini, F.; Santeusanio, S. ARKIVOC 2002, xi, 274–292.
Return to citation in text: [1] [2] [3] -
Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Mantellini, F.; Perrulli, F. R.; Santeusanio, S. Eur. J. Org. Chem. 2009, 3109–3127. doi:10.1002/ejoc.200900243
Return to citation in text: [1] [2] [3] [4] -
Lemos, A. Molecules 2009, 14, 4098–4119. doi:10.3390/molecules14104098
Return to citation in text: [1] [2] [3] [4] -
Beyer, H.; Badicke, G. Chem. Ber. 1960, 93, 826–833. doi:10.1002/cber.19600930411
Return to citation in text: [1] -
Schultz, A. G.; Hagmann, W. K. J. Org. Chem. 1978, 43, 3391–3393. doi:10.1021/jo00411a029
Return to citation in text: [1] -
Haelters, J. P.; Corbel, B.; Sturtz, G. Phosphorus, Sulfur Silicon Relat. Elem. 1988, 37, 65–85. doi:10.1080/03086648808074352
Return to citation in text: [1] -
Arcadi, A.; Attanasi, O. A.; De Crescentini, L.; Rossi, E. Tetrahedron Lett. 1997, 38, 2329–2332. doi:10.1016/S0040-4039(97)00306-7
Return to citation in text: [1] -
Palacios, F.; Aparicio, D.; López, Y.; de los Santos, J. M. Tetrahedron 2005, 61, 2815–2830. doi:10.1016/j.tet.2005.01.081
Return to citation in text: [1] -
Yunoki, R.; Yajima, A.; Taniguchi, T.; Ishibashi, H. Tetrahedron Lett. 2013, 54, 4102–4105. doi:10.1016/j.tetlet.2013.05.110
Return to citation in text: [1] -
Attanasi, O. A.; Berretta, S.; De Crescentini, L.; Favi, G.; Giorgi, G.; Mantellini, F. Adv. Synth. Catal. 2009, 351, 715–719. doi:10.1002/adsc.200800807
Return to citation in text: [1] -
Attanasi, O. A.; De Crescentini, L.; Filippone, P.; Giorgi, G.; Nicolini, S.; Perrulli, F. R.; Santeusanio, S. Tetrahedron 2014, 70, 7336–7343. doi:10.1016/j.tet.2014.07.038
Return to citation in text: [1] -
Attanasi, O.; Filippone, P.; Battistoni, P.; Fava, G. Synthesis 1984, 422–424. doi:10.1055/s-1984-30860
Return to citation in text: [1] -
Perrulli, F. R.; Favi, G.; De Crescentini, L.; Attanasi, O. A.; Santeusanio, S.; Mantellini, F. Eur. J. Org. Chem. 2015, 7154–7159. doi:10.1002/ejoc.201501017
Return to citation in text: [1] -
Kylmälä, T.; Hämäläinen, A.; Kuuloja, N.; Tois, J.; Franzén, R. Tetrahedron 2010, 66, 8854–8861. doi:10.1016/j.tet.2010.09.069
Return to citation in text: [1] -
Attanasi, O. A.; De Crescentini, L.; Filippone, P.; Foresti, E.; Mantellini, F. J. Org. Chem. 2000, 65, 2820–2823. doi:10.1021/jo9917792
Return to citation in text: [1] -
Tamanini, E.; Flavin, K.; Motevalli, M.; Piperno, S.; Gheber, L. A.; Todd, M. H.; Watkinson, M. Inorg. Chem. 2010, 49, 3789–3800. doi:10.1021/ic901939x
Return to citation in text: [1] -
Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev. 1999, 99, 2293–2352. doi:10.1021/cr980440x
Return to citation in text: [1] -
Aparicio, D.; Attanasi, O. A.; Filippone, P.; Ignacio, R.; Lillini, S.; Mantellini, F.; Palacios, F.; de los Santos, J. M. J. Org. Chem. 2006, 71, 5897–5905. doi:10.1021/jo060450v
Return to citation in text: [1] -
Attanasi, O. A.; De Crescentini, L.; Favi, G.; Mantellini, F.; Nicolini, S. J. Org. Chem. 2011, 76, 8320–8328. doi:10.1021/jo201497r
Return to citation in text: [1] -
Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Lillini, S.; Mantellini, F.; Santeusanio, S. Synlett 2005, 1474–1476. doi:10.1055/s-2005-868517
Return to citation in text: [1] -
Semakin, A. N.; Sukhorukov, A. Yu.; Lesiv, A. V.; Ioffe, S. L.; Lyssenko, K. A.; Nelyubina, Y. V.; Tartakovsky, V. A. Org. Lett. 2009, 11, 4072–4075. doi:10.1021/ol9015157
Return to citation in text: [1] [2] [3] [4] -
Semakin, A. N.; Sukhorukov, A. Yu.; Nelyubina, Y. V.; Ioffe, S. L.; Tartakovsky, V. A. Synthesis 2012, 1095–1101. doi:10.1055/s-0031-1289735
Return to citation in text: [1] [2] [3] -
Semakin, A. N.; Sukhorukov, A. Yu.; Nelyubina, Y. V.; Khomutova, Y. A.; Ioffe, S. L.; Tartakovsky, V. A. J. Org. Chem. 2014, 79, 6079–6086. doi:10.1021/jo5007703
Return to citation in text: [1] [2] [3] -
Golovanov, I. S.; Sukhorukov, A. Yu.; Nelyubina, Y. V.; Khomutova, Y. A.; Ioffe, S. L.; Tartakovsky, V. A. J. Org. Chem. 2015, 80, 6728–6736. doi:10.1021/acs.joc.5b00892
Return to citation in text: [1] [2] -
García, J. M.; Jones, G. O.; Virwani, K.; McCloskey, B. D.; Boday, D. J.; ter Huurne, G. M.; Horn, H. W.; Coady, D. J.; Bintaleb, A. M.; Alabdulrahman, A. M. S.; Alsewailem, F.; Almegren, H. A. A.; Hedrick, J. L. Science 2014, 344, 732–735. doi:10.1126/science.1251484
Return to citation in text: [1] -
Palla, G.; Predieri, G.; Domiano, P.; Vignali, C.; Turner, W. Tetrahedron 1986, 42, 3649–3654. doi:10.1016/S0040-4020(01)87332-4
Return to citation in text: [1]
57. | Semakin, A. N.; Sukhorukov, A. Yu.; Lesiv, A. V.; Ioffe, S. L.; Lyssenko, K. A.; Nelyubina, Y. V.; Tartakovsky, V. A. Org. Lett. 2009, 11, 4072–4075. doi:10.1021/ol9015157 |
61. | García, J. M.; Jones, G. O.; Virwani, K.; McCloskey, B. D.; Boday, D. J.; ter Huurne, G. M.; Horn, H. W.; Coady, D. J.; Bintaleb, A. M.; Alabdulrahman, A. M. S.; Alsewailem, F.; Almegren, H. A. A.; Hedrick, J. L. Science 2014, 344, 732–735. doi:10.1126/science.1251484 |
57. | Semakin, A. N.; Sukhorukov, A. Yu.; Lesiv, A. V.; Ioffe, S. L.; Lyssenko, K. A.; Nelyubina, Y. V.; Tartakovsky, V. A. Org. Lett. 2009, 11, 4072–4075. doi:10.1021/ol9015157 |
58. | Semakin, A. N.; Sukhorukov, A. Yu.; Nelyubina, Y. V.; Ioffe, S. L.; Tartakovsky, V. A. Synthesis 2012, 1095–1101. doi:10.1055/s-0031-1289735 |
59. | Semakin, A. N.; Sukhorukov, A. Yu.; Nelyubina, Y. V.; Khomutova, Y. A.; Ioffe, S. L.; Tartakovsky, V. A. J. Org. Chem. 2014, 79, 6079–6086. doi:10.1021/jo5007703 |
60. | Golovanov, I. S.; Sukhorukov, A. Yu.; Nelyubina, Y. V.; Khomutova, Y. A.; Ioffe, S. L.; Tartakovsky, V. A. J. Org. Chem. 2015, 80, 6728–6736. doi:10.1021/acs.joc.5b00892 |
57. | Semakin, A. N.; Sukhorukov, A. Yu.; Lesiv, A. V.; Ioffe, S. L.; Lyssenko, K. A.; Nelyubina, Y. V.; Tartakovsky, V. A. Org. Lett. 2009, 11, 4072–4075. doi:10.1021/ol9015157 |
58. | Semakin, A. N.; Sukhorukov, A. Yu.; Nelyubina, Y. V.; Ioffe, S. L.; Tartakovsky, V. A. Synthesis 2012, 1095–1101. doi:10.1055/s-0031-1289735 |
59. | Semakin, A. N.; Sukhorukov, A. Yu.; Nelyubina, Y. V.; Khomutova, Y. A.; Ioffe, S. L.; Tartakovsky, V. A. J. Org. Chem. 2014, 79, 6079–6086. doi:10.1021/jo5007703 |
1. | Su, X.; Aprahamian, I. Chem. Soc. Rev. 2014, 43, 1963–1981. doi:10.1039/c3cs60385g |
2. | Tatum, L. A.; Su, X.; Aprahamian, I. Acc. Chem. Res. 2014, 47, 2141–2149. doi:10.1021/ar500111f |
3. | Chandrasekhar, V.; Azhakar, R.; Bickley, J. F.; Steiner, A. Chem. Commun. 2005, 459–461. doi:10.1039/b414353a |
4. | Klein, J. M.; Saggiomo, V.; Reck, L.; McPartlin, M.; Dan Pantoş, G.; Lüning, U.; Sanders, J. K. M. Chem. Commun. 2011, 47, 3371–3373. doi:10.1039/c0cc04863a |
5. | Poolman, J. M.; Boekhoven, J.; Besselink, A.; Olive, A. G. L.; van Esch, J. H.; Eelkema, R. Nat. Protoc. 2014, 9, 977–988. doi:10.1038/nprot.2014.055 |
6. | Stadler, A.-M.; Ramírez, J.; Lehn, J.-M.; Vincent, B. Chem. Sci. 2016, 7, 3689–3693. doi:10.1039/C5SC04403K |
7. | Buchs (née Levrand), B.; Fieber, W.; Vigouroux-Elie, F.; Sreenivasachary, N.; Lehn, J.-M.; Herrmann, A. Org. Biomol. Chem. 2011, 9, 2906–2916. doi:10.1039/C0OB01139H |
8. | Ratjen, L.; Lehn, J.-M. RSC Adv. 2014, 4, 50554–50557. doi:10.1039/C4RA11119B |
9. | Cao, X.-Y.; Harrowfield, J.; Nitschke, J.; Ramírez, J.; Stadler, A.-M.; Kyritsakas-Gruber, N.; Madalan, A.; Rissanen, K.; Russo, L.; Vaughan, G.; Lehn, J.-M. Eur. J. Inorg. Chem. 2007, 2944–2965. doi:10.1002/ejic.200700235 |
10. | Chaur, M. N.; Collado, D.; Lehn, J.-M. Chem. – Eur. J. 2011, 17, 248–258. doi:10.1002/chem.201002308 |
11. | Folmer-Andersen, J. F.; Lehn, J.-M. Angew. Chem., Int. Ed. 2009, 48, 7664–7667. doi:10.1002/anie.200902487 |
12. | Folmer-Andersen, J. F.; Lehn, J.-M. J. Am. Chem. Soc. 2011, 133, 10966–10973. doi:10.1021/ja2035909 |
13. | Pace, G.; Stefankiewicz, A.; Harrowfield, J.; Lehn, J.-M.; Samorì, P. ChemPhysChem 2009, 10, 699–705. doi:10.1002/cphc.200800733 |
14. | Roy, N.; Buhler, E.; Lehn, J.-M. Polym. Int. 2014, 63, 1400–1405. doi:10.1002/pi.4646 |
15. | Schaeffer, G.; Harrowfield, J. M.; Lehn, J.-M.; Hirsch, A. K. H. Polyhedron 2012, 41, 40–43. doi:10.1016/j.poly.2012.04.013 |
16. | von Delius, M.; Geertsema, E. M.; Leigh, D. A. Nat. Chem. 2010, 2, 96–101. doi:10.1038/nchem.481 |
17. | von Delius, M.; Geertsema, E. M.; Leigh, D. A.; Slawin, A. M. Z. Org. Biomol. Chem. 2010, 8, 4617–4624. doi:10.1039/c0ob00214c |
35. | Attanasi, O. A.; Caglioti, L. Org. Prep. Proced. Int. 1986, 18, 299–327. doi:10.1080/00304948609356836 |
36. | Attanasi, O. A.; Filippone, P. Synlett 1997, 1128–1140. doi:10.1055/s-1997-973 |
37. | Attanasi, O. A.; De Crescenti, L.; Filippone, P.; Mantellini, F.; Santeusanio, S. ARKIVOC 2002, xi, 274–292. |
38. | Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Mantellini, F.; Perrulli, F. R.; Santeusanio, S. Eur. J. Org. Chem. 2009, 3109–3127. doi:10.1002/ejoc.200900243 |
39. | Lemos, A. Molecules 2009, 14, 4098–4119. doi:10.3390/molecules14104098 |
29. | Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2853–2855. doi:10.1021/ol0493094 |
30. | Rodionov, V. O.; Presolski, S.; Gardinier, S.; Lim, Y.-H.; Finn, M. G. J. Am. Chem. Soc. 2007, 129, 12696–12704. doi:10.1021/ja072678l |
31. | Presolski, S. I.; Hong, V.; Cho, S.-H.; Finn, M. G. J. Am. Chem. Soc. 2010, 132, 14570–14576. doi:10.1021/ja105743g |
32. | Lewis, W. G.; Magallon, F. G.; Fokin, V. V.; Finn, M. G. J. Am. Chem. Soc. 2004, 126, 9152–9153. doi:10.1021/ja048425z |
34. | Semakin, A. N.; Agababyan, D. P.; Kim, S.; Lee, S.; Sukhorukov, A. Yu.; Fedina, K. G.; Oh, J.; Ioffe, S. L. Tetrahedron Lett. 2015, 56, 6335–6339. doi:10.1016/j.tetlet.2015.09.106 |
18. | Edison, S. E.; Hotz, R. P.; Baldwin, M. J. Chem. Commun. 2004, 1212–1213. doi:10.1039/b403668a |
19. | Goldcamp, M. J.; Robison, S. E.; Krause Bauer, J. A.; Baldwin, M. J. Inorg. Chem. 2002, 41, 2307–2309. doi:10.1021/ic015590w |
20. | Goldcamp, M. J.; Rosa, D. T.; Landers, N. A.; Mandel, S. M.; Krause Bauer, J. A.; Baldwin, M. J. Synthesis 2000, 2033–2038. doi:10.1055/s-2000-8724 |
21. | Goldcamp, M. J.; Edison, S. E.; Squires, L. N.; Rosa, D. T.; Vowels, N. K.; Coker, N. L.; Krause Bauer, J. A.; Baldwin, M. J. Inorg. Chem. 2003, 42, 717–728. doi:10.1021/ic025860q |
22. | Semakin, A. N.; Sukhorukov, A. Yu.; Lesiv, A. V.; Khomutova, Y. A.; Ioffe, S. L.; Lyssenko, K. A. Synthesis 2007, 2862–2866. doi:10.1055/s-2007-983847 |
23. | Semakin, A. N.; Sukhorukov, A. Yu.; Ioffe, S. L.; Tartakovsky, V. A. Synthesis 2011, 1403–1412. doi:10.1055/s-0030-1259995 |
24. | Shalamova, E. A.; Lee, Y.; Chung, G.; Semakin, A. N.; Oh, J.; Sukhorukov, A. Yu.; Arkhipov, D. E.; Ioffe, S. L.; Semenov, S. E. Tetrahedron Lett. 2014, 55, 1222–1225. doi:10.1016/j.tetlet.2014.01.003 |
25. | Dorokhov, V. S.; Jung, H.; Kang, G.; Andreev, Y. A.; Semakin, A. N.; Oh, J.; Sukhorukov, A. Yu.; Ioffe, S. L.; Semenov, S. E. Synth. Commun. 2015, 45, 1362–1366. doi:10.1080/00397911.2015.1021424 |
26. | Boyko, Y. D.; Sukhorukov, A. Yu.; Semakin, A. N.; Nelyubina, Y. V.; Ananyev, I. V.; Rangappa, K. S.; Ioffe, S. L. Polyhedron 2014, 71, 24–33. doi:10.1016/j.poly.2014.01.003 |
27. | Premužić, D.; Muche, S.; Hołyńska, M. New J. Chem. 2014, 38, 2894–2901. doi:10.1039/C4NJ00194J |
28. | Premužić, D.; Korabik, M.; Hołyńska, M. J. Mol. Struct. 2014, 1059, 265–270. doi:10.1016/j.molstruc.2013.12.001 |
29. | Chan, T. R.; Hilgraf, R.; Sharpless, K. B.; Fokin, V. V. Org. Lett. 2004, 6, 2853–2855. doi:10.1021/ol0493094 |
30. | Rodionov, V. O.; Presolski, S.; Gardinier, S.; Lim, Y.-H.; Finn, M. G. J. Am. Chem. Soc. 2007, 129, 12696–12704. doi:10.1021/ja072678l |
31. | Presolski, S. I.; Hong, V.; Cho, S.-H.; Finn, M. G. J. Am. Chem. Soc. 2010, 132, 14570–14576. doi:10.1021/ja105743g |
32. | Lewis, W. G.; Magallon, F. G.; Fokin, V. V.; Finn, M. G. J. Am. Chem. Soc. 2004, 126, 9152–9153. doi:10.1021/ja048425z |
33. | Blackman, A. G. Polyhedron 2005, 24, 1–39. doi:10.1016/j.poly.2004.10.012 |
34. | Semakin, A. N.; Agababyan, D. P.; Kim, S.; Lee, S.; Sukhorukov, A. Yu.; Fedina, K. G.; Oh, J.; Ioffe, S. L. Tetrahedron Lett. 2015, 56, 6335–6339. doi:10.1016/j.tetlet.2015.09.106 |
57. | Semakin, A. N.; Sukhorukov, A. Yu.; Lesiv, A. V.; Ioffe, S. L.; Lyssenko, K. A.; Nelyubina, Y. V.; Tartakovsky, V. A. Org. Lett. 2009, 11, 4072–4075. doi:10.1021/ol9015157 |
58. | Semakin, A. N.; Sukhorukov, A. Yu.; Nelyubina, Y. V.; Ioffe, S. L.; Tartakovsky, V. A. Synthesis 2012, 1095–1101. doi:10.1055/s-0031-1289735 |
59. | Semakin, A. N.; Sukhorukov, A. Yu.; Nelyubina, Y. V.; Khomutova, Y. A.; Ioffe, S. L.; Tartakovsky, V. A. J. Org. Chem. 2014, 79, 6079–6086. doi:10.1021/jo5007703 |
60. | Golovanov, I. S.; Sukhorukov, A. Yu.; Nelyubina, Y. V.; Khomutova, Y. A.; Ioffe, S. L.; Tartakovsky, V. A. J. Org. Chem. 2015, 80, 6728–6736. doi:10.1021/acs.joc.5b00892 |
1. | Su, X.; Aprahamian, I. Chem. Soc. Rev. 2014, 43, 1963–1981. doi:10.1039/c3cs60385g |
2. | Tatum, L. A.; Su, X.; Aprahamian, I. Acc. Chem. Res. 2014, 47, 2141–2149. doi:10.1021/ar500111f |
54. | Aparicio, D.; Attanasi, O. A.; Filippone, P.; Ignacio, R.; Lillini, S.; Mantellini, F.; Palacios, F.; de los Santos, J. M. J. Org. Chem. 2006, 71, 5897–5905. doi:10.1021/jo060450v |
55. | Attanasi, O. A.; De Crescentini, L.; Favi, G.; Mantellini, F.; Nicolini, S. J. Org. Chem. 2011, 76, 8320–8328. doi:10.1021/jo201497r |
56. | Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Lillini, S.; Mantellini, F.; Santeusanio, S. Synlett 2005, 1474–1476. doi:10.1055/s-2005-868517 |
1. | Su, X.; Aprahamian, I. Chem. Soc. Rev. 2014, 43, 1963–1981. doi:10.1039/c3cs60385g |
2. | Tatum, L. A.; Su, X.; Aprahamian, I. Acc. Chem. Res. 2014, 47, 2141–2149. doi:10.1021/ar500111f |
3. | Chandrasekhar, V.; Azhakar, R.; Bickley, J. F.; Steiner, A. Chem. Commun. 2005, 459–461. doi:10.1039/b414353a |
4. | Klein, J. M.; Saggiomo, V.; Reck, L.; McPartlin, M.; Dan Pantoş, G.; Lüning, U.; Sanders, J. K. M. Chem. Commun. 2011, 47, 3371–3373. doi:10.1039/c0cc04863a |
5. | Poolman, J. M.; Boekhoven, J.; Besselink, A.; Olive, A. G. L.; van Esch, J. H.; Eelkema, R. Nat. Protoc. 2014, 9, 977–988. doi:10.1038/nprot.2014.055 |
6. | Stadler, A.-M.; Ramírez, J.; Lehn, J.-M.; Vincent, B. Chem. Sci. 2016, 7, 3689–3693. doi:10.1039/C5SC04403K |
7. | Buchs (née Levrand), B.; Fieber, W.; Vigouroux-Elie, F.; Sreenivasachary, N.; Lehn, J.-M.; Herrmann, A. Org. Biomol. Chem. 2011, 9, 2906–2916. doi:10.1039/C0OB01139H |
8. | Ratjen, L.; Lehn, J.-M. RSC Adv. 2014, 4, 50554–50557. doi:10.1039/C4RA11119B |
9. | Cao, X.-Y.; Harrowfield, J.; Nitschke, J.; Ramírez, J.; Stadler, A.-M.; Kyritsakas-Gruber, N.; Madalan, A.; Rissanen, K.; Russo, L.; Vaughan, G.; Lehn, J.-M. Eur. J. Inorg. Chem. 2007, 2944–2965. doi:10.1002/ejic.200700235 |
10. | Chaur, M. N.; Collado, D.; Lehn, J.-M. Chem. – Eur. J. 2011, 17, 248–258. doi:10.1002/chem.201002308 |
11. | Folmer-Andersen, J. F.; Lehn, J.-M. Angew. Chem., Int. Ed. 2009, 48, 7664–7667. doi:10.1002/anie.200902487 |
12. | Folmer-Andersen, J. F.; Lehn, J.-M. J. Am. Chem. Soc. 2011, 133, 10966–10973. doi:10.1021/ja2035909 |
13. | Pace, G.; Stefankiewicz, A.; Harrowfield, J.; Lehn, J.-M.; Samorì, P. ChemPhysChem 2009, 10, 699–705. doi:10.1002/cphc.200800733 |
14. | Roy, N.; Buhler, E.; Lehn, J.-M. Polym. Int. 2014, 63, 1400–1405. doi:10.1002/pi.4646 |
15. | Schaeffer, G.; Harrowfield, J. M.; Lehn, J.-M.; Hirsch, A. K. H. Polyhedron 2012, 41, 40–43. doi:10.1016/j.poly.2012.04.013 |
16. | von Delius, M.; Geertsema, E. M.; Leigh, D. A. Nat. Chem. 2010, 2, 96–101. doi:10.1038/nchem.481 |
17. | von Delius, M.; Geertsema, E. M.; Leigh, D. A.; Slawin, A. M. Z. Org. Biomol. Chem. 2010, 8, 4617–4624. doi:10.1039/c0ob00214c |
31. | Presolski, S. I.; Hong, V.; Cho, S.-H.; Finn, M. G. J. Am. Chem. Soc. 2010, 132, 14570–14576. doi:10.1021/ja105743g |
32. | Lewis, W. G.; Magallon, F. G.; Fokin, V. V.; Finn, M. G. J. Am. Chem. Soc. 2004, 126, 9152–9153. doi:10.1021/ja048425z |
34. | Semakin, A. N.; Agababyan, D. P.; Kim, S.; Lee, S.; Sukhorukov, A. Yu.; Fedina, K. G.; Oh, J.; Ioffe, S. L. Tetrahedron Lett. 2015, 56, 6335–6339. doi:10.1016/j.tetlet.2015.09.106 |
51. | Attanasi, O. A.; De Crescentini, L.; Filippone, P.; Foresti, E.; Mantellini, F. J. Org. Chem. 2000, 65, 2820–2823. doi:10.1021/jo9917792 |
52. | Tamanini, E.; Flavin, K.; Motevalli, M.; Piperno, S.; Gheber, L. A.; Todd, M. H.; Watkinson, M. Inorg. Chem. 2010, 49, 3789–3800. doi:10.1021/ic901939x |
50. | Kylmälä, T.; Hämäläinen, A.; Kuuloja, N.; Tois, J.; Franzén, R. Tetrahedron 2010, 66, 8854–8861. doi:10.1016/j.tet.2010.09.069 |
53. | Caravan, P.; Ellison, J. J.; McMurry, T. J.; Lauffer, R. B. Chem. Rev. 1999, 99, 2293–2352. doi:10.1021/cr980440x |
35. | Attanasi, O. A.; Caglioti, L. Org. Prep. Proced. Int. 1986, 18, 299–327. doi:10.1080/00304948609356836 |
36. | Attanasi, O. A.; Filippone, P. Synlett 1997, 1128–1140. doi:10.1055/s-1997-973 |
37. | Attanasi, O. A.; De Crescenti, L.; Filippone, P.; Mantellini, F.; Santeusanio, S. ARKIVOC 2002, xi, 274–292. |
38. | Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Mantellini, F.; Perrulli, F. R.; Santeusanio, S. Eur. J. Org. Chem. 2009, 3109–3127. doi:10.1002/ejoc.200900243 |
39. | Lemos, A. Molecules 2009, 14, 4098–4119. doi:10.3390/molecules14104098 |
40. | Beyer, H.; Badicke, G. Chem. Ber. 1960, 93, 826–833. doi:10.1002/cber.19600930411 |
41. | Schultz, A. G.; Hagmann, W. K. J. Org. Chem. 1978, 43, 3391–3393. doi:10.1021/jo00411a029 |
42. | Haelters, J. P.; Corbel, B.; Sturtz, G. Phosphorus, Sulfur Silicon Relat. Elem. 1988, 37, 65–85. doi:10.1080/03086648808074352 |
43. | Arcadi, A.; Attanasi, O. A.; De Crescentini, L.; Rossi, E. Tetrahedron Lett. 1997, 38, 2329–2332. doi:10.1016/S0040-4039(97)00306-7 |
44. | Palacios, F.; Aparicio, D.; López, Y.; de los Santos, J. M. Tetrahedron 2005, 61, 2815–2830. doi:10.1016/j.tet.2005.01.081 |
45. | Yunoki, R.; Yajima, A.; Taniguchi, T.; Ishibashi, H. Tetrahedron Lett. 2013, 54, 4102–4105. doi:10.1016/j.tetlet.2013.05.110 |
46. | Attanasi, O. A.; Berretta, S.; De Crescentini, L.; Favi, G.; Giorgi, G.; Mantellini, F. Adv. Synth. Catal. 2009, 351, 715–719. doi:10.1002/adsc.200800807 |
47. | Attanasi, O. A.; De Crescentini, L.; Filippone, P.; Giorgi, G.; Nicolini, S.; Perrulli, F. R.; Santeusanio, S. Tetrahedron 2014, 70, 7336–7343. doi:10.1016/j.tet.2014.07.038 |
48. | Attanasi, O.; Filippone, P.; Battistoni, P.; Fava, G. Synthesis 1984, 422–424. doi:10.1055/s-1984-30860 |
49. | Perrulli, F. R.; Favi, G.; De Crescentini, L.; Attanasi, O. A.; Santeusanio, S.; Mantellini, F. Eur. J. Org. Chem. 2015, 7154–7159. doi:10.1002/ejoc.201501017 |
62. | Palla, G.; Predieri, G.; Domiano, P.; Vignali, C.; Turner, W. Tetrahedron 1986, 42, 3649–3654. doi:10.1016/S0040-4020(01)87332-4 |
38. | Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Mantellini, F.; Perrulli, F. R.; Santeusanio, S. Eur. J. Org. Chem. 2009, 3109–3127. doi:10.1002/ejoc.200900243 |
39. | Lemos, A. Molecules 2009, 14, 4098–4119. doi:10.3390/molecules14104098 |
35. | Attanasi, O. A.; Caglioti, L. Org. Prep. Proced. Int. 1986, 18, 299–327. doi:10.1080/00304948609356836 |
36. | Attanasi, O. A.; Filippone, P. Synlett 1997, 1128–1140. doi:10.1055/s-1997-973 |
37. | Attanasi, O. A.; De Crescenti, L.; Filippone, P.; Mantellini, F.; Santeusanio, S. ARKIVOC 2002, xi, 274–292. |
38. | Attanasi, O. A.; De Crescentini, L.; Favi, G.; Filippone, P.; Mantellini, F.; Perrulli, F. R.; Santeusanio, S. Eur. J. Org. Chem. 2009, 3109–3127. doi:10.1002/ejoc.200900243 |
39. | Lemos, A. Molecules 2009, 14, 4098–4119. doi:10.3390/molecules14104098 |
© 2016 Semakin et al.; licensee Beilstein-Institut.
This is an Open Access article under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
The license is subject to the Beilstein Journal of Organic Chemistry terms and conditions: (http://www.beilstein-journals.org/bjoc)