Photoredox catalysis harvesting multiple photon or electrochemical energies

Mattia Lepori, Simon Schmid and Joshua P. Barham
Beilstein J. Org. Chem. 2023, 19, 1055–1145. https://doi.org/10.3762/bjoc.19.81

Cite the Following Article

Photoredox catalysis harvesting multiple photon or electrochemical energies
Mattia Lepori, Simon Schmid and Joshua P. Barham
Beilstein J. Org. Chem. 2023, 19, 1055–1145. https://doi.org/10.3762/bjoc.19.81

How to Cite

Lepori, M.; Schmid, S.; Barham, J. P. Beilstein J. Org. Chem. 2023, 19, 1055–1145. doi:10.3762/bjoc.19.81

Download Citation

Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window below.
Citation data in RIS format can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Zotero.

Presentation Graphic

Picture with graphical abstract, title and authors for social media postings and presentations.
Format: PNG Size: 8.1 MB Download

Citations to This Article

Up to 20 of the most recent references are displayed here.

Scholarly Works

  • Kenari, M. E.; Maiti, S.; Ling, J.; El-Shamy, X.; Bagga, H.; Addicoat, M. A.; Milner, P. J.; Das, A. Toward Pore Size-Selective Photoredox Catalysis Using Bifunctional Microporous 2D Triazine-Based Covalent Organic Frameworks. ACS omega 2024, 9, 49249–49258. doi:10.1021/acsomega.4c06171
  • Lepori, M.; Dey, I.; Pratley, C.; Barham, J. P. Merging New and Old Concepts: Tandem Oxidative Radical‐Polar Crossover Ritter Amidation via Multicomponent Photo‐ and Electrochemical Processes. European Journal of Organic Chemistry 2024, 27. doi:10.1002/ejoc.202400840
  • Tayu, M.; Matsukuma, K.; Yamaguchi, T.; Noji, M.; Hayashi, S.; Ohrui, S.; Saito, N. Photoredox catalysis using methoxyarenes: mechanistic studies and synthetic applications. Bulletin of the Chemical Society of Japan 2024, 97. doi:10.1093/bulcsj/uoae138
  • Lamb, M. C.; Steiniger, K. A.; Trigoura, L. K.; Wu, J.; Kundu, G.; Huang, H.; Lambert, T. H. Electrophotocatalysis for Organic Synthesis. Chemical reviews 2024, 124, 12264–12304. doi:10.1021/acs.chemrev.4c00464
  • Andrejčák, S.; Májek, M. Applications of Electrophotocatalysis in C-H Functionalization of Organic Molecules. Chemistry (Weinheim an der Bergstrasse, Germany) 2024, 30, e202401795. doi:10.1002/chem.202401795
  • Burt, L. K.; Robertson, J. C.; Breadmore, M. C.; Connell, T. U.; Bissember, A. C. Investigating the Effects of Pulsed LED Irradiation in Photoredox Catalysis: A Pilot Study. Organometallics 2024, 43, 3226–3235. doi:10.1021/acs.organomet.4c00232
  • Grudzień, K.; Zlobin, A.; Zadworny, J.; Rybicka-Jasińska, K.; Sadowski, B. Modern photo- and electrochemical approaches to aryl radical generation. Organic Chemistry Frontiers 2024, 11, 5232–5277. doi:10.1039/d4qo00999a
  • Lan, L.; Xu, K.; Zeng, C. The merger of electro-reduction and hydrogen bonding activation for a radical Smiles rearrangement. Chemical science 2024, 15, 13459–13465. doi:10.1039/d4sc02821j
  • Villa, M.; Fermi, A.; Calogero, F.; Wu, X.; Gualandi, A.; Cozzi, P. G.; Troisi, A.; Ventura, B.; Ceroni, P. Organic super-reducing photocatalysts generate solvated electrons via two consecutive photon induced processes. Chemical science 2024, 15, 14739–14745. doi:10.1039/d4sc04518a
  • Beil, S. B.; Bonnet, S.; Casadevall, C.; Detz, R. J.; Eisenreich, F.; Glover, S. D.; Kerzig, C.; Næsborg, L.; Pullen, S.; Storch, G.; Wei, N.; Zeymer, C. Challenges and Future Perspectives in Photocatalysis: Conclusions from an Interdisciplinary Workshop. JACS Au 2024, 4, 2746–2766. doi:10.1021/jacsau.4c00527
  • Lian, F.; Li, J.-L.; Xu, K. When transition-metal catalysis meets electrosynthesis: a recent update. Organic & biomolecular chemistry 2024, 22, 4390–4419. doi:10.1039/d4ob00484a
  • Zhang, Y.; Guo, H.; Kang, W.-J. Organophotocatalytic or Electrophotocatalytic Reduction and Functionalization Reactions with a Thioxanthone-TfOH Complex Catalyst. Synlett 2024, 36, 110–118. doi:10.1055/a-2312-5896
  • Singh, P.; Lal, N.; Shaikh, A. C. Solvated Electrons: Dynamic Reductant in Visible Light Photoredox Catalysis. Advanced Synthesis & Catalysis 2024, 366, 1906–1921. doi:10.1002/adsc.202400001
  • Hossain, M. M.; Shaikh, A. C.; Kaur, R.; Gianetti, T. L. Red Light-Blue Light Chromoselective C(sp2)-X Bond Activation by Organic Helicenium-Based Photocatalysis. Journal of the American Chemical Society 2024, 146, 7922–7930. doi:10.1021/jacs.3c13380
  • Wang, M.; Wang, D.; Xu, K.; Zeng, C. Electrophotoredox cerium-catalyzed decarboxylative radical cyclization cascade for the synthesis of alkylated benzimidazo-fused isoquinolinones. Catalysis Science & Technology 2024, 14, 1037–1042. doi:10.1039/d4cy00016a
  • Jin, Y.; Liu, X.; Qu, C.; Li, C.; Wang, H.; Zhan, X.; Cao, X.; Li, X.; Yu, B.; Zhang, Q.; Qi, D.; Jiang, J. Perylene diimide covalent organic frameworks super-reductant for visible light-driven reduction of aryl halides. Chinese Journal of Catalysis 2024, 57, 171–183. doi:10.1016/s1872-2067(23)64592-9
  • Sau, S. C.; Schmitz, M.; Burdenski, C.; Baumert, M.; Antoni, P. W.; Kerzig, C.; Hansmann, M. M. Dicationic Acridinium/Carbene Hybrids as Strongly Oxidizing Photocatalysts. Journal of the American Chemical Society 2024, 146, 3416–3426. doi:10.1021/jacs.3c12766
  • Kang, W.-J.; Zhang, Y.; Li, B.; Guo, H. Electrophotocatalytic hydrogenation of imines and reductive functionalization of aryl halides. Nature communications 2024, 15, 655. doi:10.1038/s41467-024-45015-6
  • Tian, X.; Liu, Y.; Yakubov, S.; Schütte, J.; Chiba, S.; Barham, J. P. Photo- and electro-chemical strategies for the activations of strong chemical bonds. Chemical Society reviews 2024, 53, 263–316. doi:10.1039/d2cs00581f
  • Jorea, A.; Capucciati, A.; Ravelli, D. Photoelectrochemical Approaches for the Functionalization of C-H Bonds. Reference Module in Chemistry, Molecular Sciences and Chemical Engineering; Elsevier, 2024. doi:10.1016/b978-0-443-15742-4.00017-x
Other Beilstein-Institut Open Science Activities