Supporting Information
Supporting Information File 1: R H Perni Supp Inf 170806.PDF contains all experimental details. | ||
Format: PDF | Size: 6.8 MB | Download |
Cite the Following Article
Hydrogenation of aromatic ketones, aldehydes, and epoxides with hydrogen and Pd(0)EnCat™ 30NP
Steven V. Ley, Angus J. P. Stewart-Liddon, David Pears, Remedios H. Perni and Kevin Treacher
Beilstein J. Org. Chem. 2006, 2, No. 15.
https://doi.org/10.1186/1860-5397-2-15
How to Cite
Ley, S. V.; Stewart-Liddon, A. J. P.; Pears, D.; Perni, R. H.; Treacher, K. Beilstein J. Org. Chem. 2006, 2, No. 15. doi:10.1186/1860-5397-2-15
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Fahimizadeh, M.; Wong, L. W.; Lee Tan, J. B.; Pasbakhsh, P. Polyurea microcapsules. Polyurea; Elsevier, 2023; pp 177–189. doi:10.1016/b978-0-323-99450-7.00021-6
- Cheng, G.; Zhang, W.; Jentys, A.; Ember, E. E.; Gutiérrez, O. Y.; Liu, Y.; Lercher, J. A. Importance of interface open circuit potential on aqueous hydrogenolytic reduction of benzyl alcohol over Pd/C. Nature communications 2022, 13, 7967. doi:10.1038/s41467-022-35554-1
- Thiyagarajan, S.; Gunanathan, C. Catalytic Hydrogenation of Epoxides to Alcohols. Chemistry, an Asian journal 2022, 17, e202200118. doi:10.1002/asia.202200118
- Gogoi, G.; Saikia, P.; Baruah, M. J.; Lee, S.; Park, Y.-B.; Dutta, R.; Bania, K. K. Mixed valent copper oxide nanocatalyst on Zeolite-Y for mechanochemical oxidation, reduction and C–C bond formation reaction. Microporous and Mesoporous Materials 2021, 326, 111392. doi:10.1016/j.micromeso.2021.111392
- Le, T. M.; Huynh, T.; Bamou, F. Z.; Szekeres, A.; Fülöp, F.; Szakonyi, Z. Novel (+)-Neoisopulegol-Based O-Benzyl Derivatives as Antimicrobial Agents. International journal of molecular sciences 2021, 22, 5626. doi:10.3390/ijms22115626
- Kowalewski, E.; Zawadzki, B.; Matus, K.; Nikiforow, K.; Śrębowata, A. Continuous-flow hydrogenation over resin supported palladium catalyst for the synthesis of industrially relevant chemicals. Reaction Kinetics, Mechanisms and Catalysis 2021, 132, 717–728. doi:10.1007/s11144-020-01922-5
- Bhardwaj, M.; Paul, S. Palladium nanoparticles onto ethylenediamine functionalized silica–cellulose substrates [Pd(0)-EDA/SCs]: An efficient and sustainable approach for hydrogenation of nitroarenes and carbonyl compounds under mild conditions. Arabian Journal of Chemistry 2019, 12, 4231–4239. doi:10.1016/j.arabjc.2016.05.008
- Anil, D. A.; Altundas, R.; Kara, Y. A novel synthesis of (2S)-3-(2,4,5-trifluorophenyl)propane-1,2-diol by sharpless asymmetric epoxidation method. Synthetic Communications 2019, 49, 852–858. doi:10.1080/00397911.2019.1576050
- Marulasiddeshwara, M.; Kumar, P. R. Hydrogenation of carbonyl compounds to alcohols catalyzed by lignin supported palladium nanoparticles. Materials Today: Proceedings 2019, 9, 295–305. doi:10.1016/j.matpr.2019.02.160
- Kumar, B. S.; Puthiaraj, P.; Amali, A. J.; Pitchumani, K. Ultrafine Bimetallic PdCo Alloy Nanoparticles on Hollow Carbon Capsules: An Efficient Heterogeneous Catalyst for Transfer Hydrogenation of Carbonyl Compounds. ACS Sustainable Chemistry & Engineering 2017, 6, 491–500. doi:10.1021/acssuschemeng.7b02754
- Leitch, D. C.; Greene, T. F.; O’Keeffe, R.; Lovelace, T. C.; Powers, J. D.; Searle, A. D. A Combined High-Throughput Screening and Reaction Profiling Approach toward Development of a Tandem Catalytic Hydrogenation for the Synthesis of Salbutamol. Organic Process Research & Development 2017, 21, 1806–1814. doi:10.1021/acs.oprd.7b00261
- Sahu, R.; Singh, V. Studies on synthesis and photoreaction of tricycloundecanes endowed with β,γ-enone chromophore: Towards angular triquinanes and annulated bicyclo[4.2.0]octanes. Tetrahedron 2017, 73, 6515–6522. doi:10.1016/j.tet.2017.09.040
- Nandi, S.; Patel, P.; Jakhar, A.; Khan, N.-u. H.; Biradar, A. V.; Kureshy, R. I.; Bajaj, H. C. Cucurbit[6]uril‐Stabilized Palladium Nanoparticles as a Highly Active Catalyst for Chemoselective Hydrogenation of Various Reducible Groups in Aqueous Media. ChemistrySelect 2017, 2, 9911–9919. doi:10.1002/slct.201702196
- Newton, M. A.; Nicholls, R.; Brazier, J. B.; Nguyen, B. N.; Mulligan, C. J.; Hellgardt, K.; Barreiro, E. M.; Emerich, H.; Hii, K.; Snigireva, I.; Thompson, P. Effect of retained chlorine in ENCAT™ 30 catalysts on the development of encapsulated Pd: insights from in situ Pd K, L3 and Cl K-edge XAS. Catalysis, Structure & Reactivity 2017, 3, 149–156. doi:10.1080/2055074x.2017.1348711
- Alex, H.; Loos, P.; Baramov, T.; Barry, J.; Godiawala, T.; Hassfeld, J.; Steinfeldt, N. Polymer Encapsulated Cobalt‐Based Catalysts (Co EnCatTM) for Selective Continuous Hydrogenation of 1‐Iodo‐4‐nitrobenzene. ChemCatChem 2017, 9, 3210–3217. doi:10.1002/cctc.201700391
- Bhaskar, R.; Joshi, H.; Sharma, A. K.; Singh, A. K. Reusable Catalyst for Transfer Hydrogenation of Aldehydes and Ketones Designed by Anchoring Palladium as Nanoparticles on Graphene Oxide Functionalized with Selenated Amine. ACS applied materials & interfaces 2017, 9, 2223–2231. doi:10.1021/acsami.6b10457
- Omonov, T. S.; Curtis, J. M. Plant Oil-Based Epoxy Intermediates for Polymers. Bio-Based Plant Oil Polymers and Composites; Elsevier, 2016; pp 99–125. doi:10.1016/b978-0-323-35833-0.00007-4
- Wang, Z.; Huang, L.; Geng, L.; Chen, R.; Xing, W.; Wang, Y.; Huang, J. Chemoselective Transfer Hydrogenation of Aldehydes and Ketones with a Heterogeneous Iridium Catalyst in Water. Catalysis Letters 2015, 145, 1008–1013. doi:10.1007/s10562-014-1473-4
- Florio, S.; Perna, F. M.; Salomone, A.; Vitale, P. 8.29 Reduction of Epoxides. Comprehensive Organic Synthesis II; Elsevier, 2014; pp 1086–1122. doi:10.1016/b978-0-08-097742-3.00831-4
- Demir, S.; Gökçe, Y.; Kaloğlu, N.; Sortais, J.-B.; Darcel, C.; Özdemir, İ. Synthesis of new iron–NHC complexes as catalysts for hydrosilylation reactions. Applied Organometallic Chemistry 2013, 27, 459–464. doi:10.1002/aoc.3006