Selectfluor and alcohol-mediated synthesis of bicyclic oxyfluorination compounds by Wagner–Meerwein rearrangement

  1. 1 ORCID Logo ,
  2. 1 ,
  3. 2 ORCID Logo ,
  4. 1,3 ORCID Logo and
  5. 1 ORCID Logo
1Department of Chemistry, Faculty of Science, Ataturk University, Erzurum, Turkey
2Technology Research and Development Application and Research Center, Trakya University, Edirne, Turkey
3Department of Chemistry, Faculty of Arts and Sciences, Amasya University, Amasya, Turkey
  1. Corresponding author email
Associate Editor: D. Y.-K. Chen
Beilstein J. Org. Chem. 2024, 20, 1462–1467. https://doi.org/10.3762/bjoc.20.129
Received 25 Mar 2024, Accepted 18 Jun 2024, Published 01 Jul 2024
A non-peer-reviewed version of this article has been posted as a preprint https://doi.org/10.3762/bxiv.2024.17.v1
Full Research Paper
cc by logo

Abstract

Herein, we report the first environmentally friendly systematic fluoroalkoxylation reactions in bicyclic systems. New oxyfluorination products were obtained with excellent yields (up to 98%) via Wagner–Meerwein rearrangement using benzonorbornadiene and the chiral natural compound (+)-camphene as bicyclic alkenes, selectfluor as an electrophilic fluorine source, and water and various alcohols as nucleophile sources. The structure of bicyclic oxy- and alkoxyfluorine compounds was determined by NMR and QTOF-MS analyses.

Introduction

Organofluorines are of great importance in the pharmaceutical and agrochemical industries, as the presence of fluorine has a serious effect on the biological activities of organic compounds by changing their metabolic stability, hydrogen bonding ability, lipophilicity, solubility, bioavailability, conformation and general structure [1-4]. About 20% of commercially available drugs contain fluorine, and this ratio is estimated to increase further [5,6]. Among organofluorines, oxyfluorines are an important subclass used as an active ingredient in many different drugs such as fludrocortisone (the first fluorine-containing commercial drug) [7,8], sofosbuvir (antihepatitis C) [9], dexamethasone (to treat ashma, severe allergies) [10], difluprednate (ocular anti-inflammatory) [11,12] and many more (Figure 1). On the other hand, with unusual geometry and high reactivity norbornadiene and benzonorbornadiene derivative bicyclic compounds attract great attention by researchers with their use as building blocks in different application areas such as polymers, solar energy storage materials, supramolecular and bioactive compounds [13-17]. To the best of our knowledge, although the oxyfluorination of various olefins with water and alcohols is known in the literature [18-26], there is no systematic study on the oxyfluorination of bicyclic alkenes. We previously developed a dihomohalogenation method using selectfluor as an oxidant [27]. Herein, we synthesized bicyclic oxy- and alkoxyfluorine compounds using selectflour as an electrophilic fluorination reagent, water and various alcohols as an nucleophile.

[1860-5397-20-129-1]

Figure 1: Organofluorine derived drugs.

Results and Discussion

In this study, benzonorbornadiene (1a) and the chiral natural product (+)-camphene (1b) were used as bicyclic alkenes. Safe, easily soluble, easy to use, stable solid, reactive and commercial available selectfluor [18,27,28] was selected for electrophilic fluorination source. Water and various alcohols were used as nucleophiles.

First, optimization experiments were carried out for fluoroalkoxy reactions with benzonorbornadiene (1a, Table 1). As a result of experiments conducted in six different solvents at room temperature with 1.0 equivalent of selectflor and 1.0 equivalent of methanol, it was observed that there was a 12% conversion with CH3CN and a 10% conversion with nitromethane, while no conversion occurred with the other solvents including, CH2Cl2, EtOAc, 1,4-dioxane and DMF (Table 1, entries 1–6). To see the effect of reactant ratios on yields, when reactants were gradually increased at room temperature, the best result was obtained with 1.2 equivalents of selectfluor and 2.4 equivalents of methanol with 21% conversion (Table 1, entry 7). There was no significant change at higher equivalents. At 50 °C, 30% conversion was achieved with 1.2 equivalents of selectfluor and 2.4 equivalents of methanol for one hour, while at 90 °C, a 67% conversion was obtained (Table 1, entries 8 and 9). Finally, when the reaction time was increased to two hours at 90 °C, the product was obtained with a 98% conversion (Table 1, entry 10).

Table 1: Optimizing the conditions for the oxyfluorination of bicyclic alkenesa.

[Graphic 1]
Entry Solvent Selectfluor
(equiv)
CH3OH
(equiv)
Temperature (°C) Time Conversion (%)
1 CH3CN 1 1 rt 1 h 12
2 CH2Cl2 1 1 rt 1 h
3 EtOAc 1 1 rt 1 h
4 1,4-dioxane 1 1 rt 1 h
5 DMF 1 1 rt 1 h
6 CH3NO2 1 1 rt 1 h 10
7 CH3CN 1.2 2.4 rt 1 h 21
8 CH3CN 1.2 2.4 50 °C 1 h 30
9 CH3CN 1.2 2.4 90 °C 1 h 67
10 CH3CN 1.2 2.4 90 °C 2 h 98

aReaction conditions: Benzonorbornadiene (1a, 0.5 mmol), selectfluor (215 mg, 0.61 mmol) and MeOH (1.2 mmol), 2 mL of CH3CN, 2 h and 90 °C. Conversions were calculated by 1H NMR with 1,3-dinitrobenzene as an internal standard.

After obtaining the optimum fluoroalkoxylation conditions from benzonorbornadiene (1a), the reactions of benzonorbornadiene (1a) with selectfluor and 10 different alcohol derivatives were examined (Scheme 1). Under optimum conditions, fluoroalkoxy compounds 3a–j were obtained in excellent yields (91–98%) by the reaction of benzonorbornadiene (1a) with selectfluor and alcohols (Scheme 1). The configurations of fluoroalkoxy compounds 3a–j were confirmed by the COSY 2D-NMR spectrum of compound 3a (Supporting Information File 1). Additionally, (+)-camphene (1b), a chiral natural product, was used as another alkene for fluoroalkoxy reactions. From (+)-camphene (1b), fluoroalkoxy compounds 4a–j were also obtained in very good yields (60–98%, Scheme 2). Since the reaction mechanism proceeding with a Wagner–Meerwein rearrangement does not cause racemization or a diastereomeric mixture and preserves the initial enantiomeric excess in the camphene's fluoroalkoxy derivatives (Scheme 4, below), optical rotations of the fluoroalkoxy derivatives of camphene 4a–j were also determined (Supporting Information File 1).

[1860-5397-20-129-i1]

Scheme 1: Oxyfluorination of benzonorbornadien (1a) with Selectfluor and alcohols. All reactions were carried out using 0.5 mmol of benzonorbornadiene (1a), 0.6 mmol of selectfluor, and 1.2 mmol alcohol in 2 mL of CH3CN at 90 °C for 2 h. Isolated yields.

[1860-5397-20-129-i2]

Scheme 2: Oxyfluorination of (+)-camphene (1b) with selectfluor and alcohols. All reactions were carried out using 0.5 mmol of (+)-camphene, 0.6 mmol of selectfluor, and 1.2 mmol alcohol in 2 mL of CH3CN at 90 °C for 2 h. Isolated yields.

In order to demonstrate the gram-scale applicability of fluoroalkoxylation reactions in bicyclic systems using optimized reaction conditions with (+)-camphene (1b, 1.0 g, 7.34 mmol), scale-up experiments were conducted. The isolated yield of 4b (1.26 g, 90% yield) is quite satisfactory, as can be seen from Scheme 3.

[1860-5397-20-129-i3]

Scheme 3: Scale-up experiments. Reaction conditions: (+)-Camphene (1b) (1.0 g, 7.34 mmol), selectfluor (3.12 g, 8.81 mmol), MeOH (17.62 mmol), CH3CN (20 mL), 90 °C, 2 h.

For the fluoroalkoxylation, we propose the mechanism given in Scheme 4. In this mechanism, first the double bond in (+)-camphene attacks the fluorine in the selectfluor and a carbocation is formed by bonding with fluorine. Subsequently, fluoroalkoxy compound 4 is formed by Wagner–Meerwein rearrangement followed by alcohol addition and deprotonation.

[1860-5397-20-129-i4]

Scheme 4: Proposed mechanism for fluoroalkoxylation of (+)-camphene by Wagner–Meerwein rearrangement.

Conclusion

New bicyclic fluoroalkoxy compounds were synthesized by a molecular fluorine and metal-free methodology. An environmentally friendly approach was pursued by using safe, easily soluble, easy to use, stable, solid and reactive selectfluor as an electrophilic fluorination reagent, and water and various alcohols as a nucleophile source. Besides being novel, the presented oxyfluorination protocol provides distinct advantageous such as (i) the methodology does not require the presence of any metal moities, (ii) enables the synthesis of corresponding oxyfluorinated analogues with high yields and selectivity, (iii) allows derivatization of natural chiral molecules, (iv) uses a safe solvent in mild reaction parameters. We hope that these potentially biologically active bicyclic fluoroalkoxy compounds will find a place in various application areas in biological systems.

Supporting Information

Supporting Information File 1: Experimental procedures, copies of 1H NMR, 13C NMR, and HRMS(Q-TOF) spectra.
Format: PDF Size: 5.4 MB Download

Acknowledgements

The authors wish to express their sincerest gratitude to Dr. Barış Anıl for his kind contributions for NMR analysis.

Funding

M.H.Ç. and B.N are grateful to The Scientific and Technological Research Council of Turkey (TUBİTAK) (Project number 2209-A) for financial support. Ziya Dağalan thanks to YÖK 100/2000 and TUBİTAK BİDEB 2211A program for their support.

Author Contributions

Ziya Dağalan: investigation; methodology; visualization; writing – review & editing. Muhammed Hanifi Çelikoğlu: investigation; methodology; writing – review & editing. Saffet Çelik: formal analysis. Ramazan Koçak: conceptualization; project administration; supervision; validation; writing – review & editing. Bilal Nişancı: conceptualization; funding acquisition; investigation; methodology; project administration; supervision; validation; writing – original draft.

Data Availability Statement

All data that supports the findings of this study is available in the published article and/or the supporting information to this article.

References

  1. Zhang, Z.; Wang, F.; Mu, X.; Chen, P.; Liu, G. Angew. Chem., Int. Ed. 2013, 52, 7549–7553. doi:10.1002/anie.201301891
    Return to citation in text: [1]
  2. Purser, S.; Moore, P. R.; Swallow, S.; Gouverneur, V. Chem. Soc. Rev. 2008, 37, 320–330. doi:10.1039/b610213c
    Return to citation in text: [1]
  3. Champagne, P. A.; Desroches, J.; Hamel, J.-D.; Vandamme, M.; Paquin, J.-F. Chem. Rev. 2015, 115, 9073–9174. doi:10.1021/cr500706a
    Return to citation in text: [1]
  4. Zhang, J.; Wang, H.; Ren, S.; Zhang, W.; Liu, Y. Org. Lett. 2015, 17, 2920–2923. doi:10.1021/acs.orglett.5b01110
    Return to citation in text: [1]
  5. Cresswell, A. J.; Davies, S. G.; Lee, J. A.; Morris, M. J.; Roberts, P. M.; Thomson, J. E. J. Org. Chem. 2012, 77, 7262–7281. doi:10.1021/jo301056r
    Return to citation in text: [1]
  6. Kumar, A.; Singh, T. V.; Venugopalan, P. J. Fluorine Chem. 2013, 150, 72–77. doi:10.1016/j.jfluchem.2013.02.014
    Return to citation in text: [1]
  7. Sedgwick, D. M.; López, I.; Román, R.; Kobayashi, N.; Okoromoba, O. E.; Xu, B.; Hammond, G. B.; Barrio, P.; Fustero, S. Org. Lett. 2018, 20, 2338–2341. doi:10.1021/acs.orglett.8b00681
    Return to citation in text: [1]
  8. Zhu, Q.; Ji, D.; Liang, T.; Wang, X.; Xu, Y. Org. Lett. 2015, 17, 3798–3801. doi:10.1021/acs.orglett.5b01774
    Return to citation in text: [1]
  9. Yancey, A.; Armbruster, A.; Tackett, S. J. Pharm. Technol. 2015, 31, 29–37. doi:10.1177/8755122514548897
    Return to citation in text: [1]
  10. Maria Faisca Phillips, A.; Pombeiro, A. J. L. Eur. J. Org. Chem. 2021, 3938–3969. doi:10.1002/ejoc.202100364
    Return to citation in text: [1]
  11. Mulki, L.; Foster, C. S. Drugs Today 2011, 47, 327–333. doi:10.1358/dot.2011.47.5.1590791
    Return to citation in text: [1]
  12. Jamal, K. N.; Callanan, D. G. Clin. Ophthalmol. 2009, 381–390. doi:10.2147/opth.s4460
    Return to citation in text: [1]
  13. Nişancı, B.; Dalkılıç, E.; Güney, M.; Daştan, A. Beilstein J. Org. Chem. 2009, 5, 39. doi:10.3762/bjoc.5.39
    Return to citation in text: [1]
  14. Hermann, K.; Nakhla, M.; Gallucci, J.; Dalkilic, E.; Dastan, A.; Badjić, J. D. Angew. Chem. 2013, 125, 11523–11526. doi:10.1002/ange.201305761
    Return to citation in text: [1]
  15. Tsubata, A.; Uchiyama, T.; Kameyama, A.; Nishikubo, T. Macromolecules 1997, 30, 5649–5654. doi:10.1021/ma970431a
    Return to citation in text: [1]
  16. Nishimura, I.; Kameyama, A.; Nishikubo, T. Macromolecules 1998, 31, 2789–2796. doi:10.1021/ma9718098
    Return to citation in text: [1]
  17. Kocak, R.; Akın, E. T.; Kalın, P.; Talaz, O.; Saracoglu, N.; Dastan, A.; Gülçin, İ.; Durdagi, S. J. Heterocycl. Chem. 2016, 53, 2049–2056. doi:10.1002/jhet.2558
    Return to citation in text: [1]
  18. Nyffeler, P. T.; Durón, S. G.; Burkart, M. D.; Vincent, S. P.; Wong, C.-H. Angew. Chem., Int. Ed. 2005, 44, 192–212. doi:10.1002/anie.200400648
    Return to citation in text: [1] [2]
  19. Lozano, O.; Blessley, G.; Martinez del Campo, T.; Thompson, A. L.; Giuffredi, G. T.; Bettati, M.; Walker, M.; Borman, R.; Gouverneur, V. Angew. Chem., Int. Ed. 2011, 50, 8105–8109. doi:10.1002/anie.201103151
    Return to citation in text: [1]
  20. Greedy, B.; Gouverneur, V. Chem. Commun. 2001, 233–234. doi:10.1039/b009179k
    Return to citation in text: [1]
  21. Wilkinson, S. C.; Lozano, O.; Schuler, M.; Pacheco, M. C.; Salmon, R.; Gouverneur, V. Angew. Chem., Int. Ed. 2009, 48, 7083–7086. doi:10.1002/anie.200901795
    Return to citation in text: [1]
  22. Vincent, S. P.; Burkart, M. D.; Tsai, C.-Y.; Zhang, Z.; Wong, C.-H. J. Org. Chem. 1999, 64, 5264–5279. doi:10.1021/jo990686h
    Return to citation in text: [1]
  23. Chang, M.-Y.; Lee, N.-C.; Lee, M.-F.; Huang, Y.-P.; Lin, C.-H. Tetrahedron Lett. 2010, 51, 5900–5903. doi:10.1016/j.tetlet.2010.08.090
    Return to citation in text: [1]
  24. Parmar, D.; Rueping, M. Chem. Commun. 2014, 50, 13928–13931. doi:10.1039/c4cc05027d
    Return to citation in text: [1]
  25. Yuan, Z.; Peng, H.; Liu, G. Chin. J. Chem. 2013, 31, 908–914. doi:10.1002/cjoc.201300437
    Return to citation in text: [1]
  26. Li, Y.; Jiang, X.; Zhao, C.; Fu, X.; Xu, X.; Tang, P. ACS Catal. 2017, 7, 1606–1609. doi:10.1021/acscatal.6b03529
    Return to citation in text: [1]
  27. Dağalan, Z.; Koçak, R.; Daştan, A.; Nişancı, B. Org. Lett. 2022, 24, 8261–8264. doi:10.1021/acs.orglett.2c02627
    Return to citation in text: [1] [2]
  28. Yang, K.; Song, M.; Ali, A. I. M.; Mudassir, S. M.; Ge, H. Chem. – Asian J. 2020, 15, 729–741. doi:10.1002/asia.202000011
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities