Supporting Information
| Supporting Information File 1: Supplementary figures and tables. | ||
| Format: PDF | Size: 933.6 KB | Download |
Cite the Following Article
Finding the most potent compounds using active learning on molecular pairs
Zachary Fralish and Daniel Reker
Beilstein J. Org. Chem. 2024, 20, 2152–2162.
https://doi.org/10.3762/bjoc.20.185
How to Cite
Fralish, Z.; Reker, D. Beilstein J. Org. Chem. 2024, 20, 2152–2162. doi:10.3762/bjoc.20.185
Download Citation
Citation data can be downloaded as file using the "Download" button or used for copy/paste from the text window
below.
Citation data in RIS format can be imported by all major citation management software, including EndNote,
ProCite, RefWorks, and Zotero.
Presentation Graphic
| Picture with graphical abstract, title and authors for social media postings and presentations. | ||
| Format: PNG | Size: 8.5 MB | Download |
Citations to This Article
Up to 20 of the most recent references are displayed here.
Scholarly Works
- Schweidtmann, A. M.; Schwaller, P. Adaptive experimentation and optimization in organic chemistry. Beilstein Journal of Organic Chemistry 2025, 21, 2367–2368. doi:10.3762/bjoc.21.180
- Nielsen, J. M.; Rasmussen, M. H.; Steinmann, C.; Ree, N.; Gajhede, M.; Stenvang, J.; Jensen, J. H. Finding Drug Candidate Hits With A Hundred Samples: Ultralow Data Screening With Active Learning. ChemistryEurope 2025. doi:10.1002/ceur.202500134
- Fralish, Z.; Reker, D. Taking a deep dive with active learning for drug discovery. Nature computational science 2024, 4, 727–728. doi:10.1038/s43588-024-00704-6