Germanyl triazoles as a platform for CuAAC diversification and chemoselective orthogonal cross-coupling

  1. 1 ORCID Logo ,
  2. 1 ,
  3. 1 ORCID Logo ,
  4. 2 ,
  5. 2 and
  6. 1 ORCID Logo
1EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
2Department of Pure & Applied Chemistry, University of Strathclyde, Glasgow, G1 1XL, UK
  1. Corresponding author email
Guest Editor: J. Yun
Beilstein J. Org. Chem. 2024, 20, 3198–3204. https://doi.org/10.3762/bjoc.20.265
Received 23 Aug 2024, Accepted 25 Nov 2024, Published 05 Dec 2024
A non-peer-reviewed version of this article has been posted as a preprint doi:10.26434/chemrxiv-2024-s7dht
Full Research Paper
cc by logo

Abstract

We report the synthesis of germanyl triazoles formed via a copper-catalysed azide–alkyne cycloaddition (CuAAC) of germanyl alkynes. The reaction is often high yielding, functional group tolerant, and compatible with complex molecules. The installation of the Ge moiety enables further diversification of the triazole products, including chemoselective transition metal-catalysed cross-coupling reactions using bifunctional boryl/germyl species.

Introduction

Since its inception, click chemistry has been established as a powerful approach for molecule synthesis. Strategies within click chemistry include several widely used reactions such as the (hetero-)Diels–Alder reaction [1,2], alkene hydrothiolation [3], and an array of amide-bond-forming chemistries [4]. However, by virtue of the access to alkyne and azide precursors and the formation of a single 1,4-disubstituted triazole product, the copper-catalysed azide–alkyne cycloaddition (CuAAC) remains the archetypal click reaction (Scheme 1) [5].

[1860-5397-20-265-i1]

Scheme 1: The CuAAC reaction and installation of functional groups for product diversification.

The reaction has shown applicability on small and large scale, as well as under flow conditions [6], and extensive scope across a range of benign solvent conditions [7-10]. In addition, the CuAAC reaction uses inexpensive Cu catalysts [11], is insensitive towards oxygen and water [12,13], and consistently delivers high yields and (where relevant) enantioselectivities [8-10,14-19]. As such, the reaction has been used extensively throughout drug discovery [20,21], chemical biology [22,23], and materials science [24-27]. Orthogonal alkyne reactivity can also be observed under certain systems [28-30]. The reaction typically uses a Cu(II) pre-catalyst, which is converted to a mechanistically-required Cu(I) species in situ through the addition of a reductant (e.g., sodium ascorbate, NaAsc) [31,32], or via Glaser–Hay alkyne homocoupling [33,34].

The mild and accessible nature of the CuAAC reaction has allowed the use of azide or alkyne components that bear functional groups for subsequent product diversification (Scheme 1). For example, protected alkynylboron reagents can be employed [35-37], such as N-methyliminodiacetic acid (MIDA)boronate esters [38], potassium trifluoroborates [39], and others [40-42]. Similarly, organosilicon reagents have proven useful in various Cu- and Pd-catalysed C–X-bond-forming strategies [43-51], including widespread use across several CuAAC methodologies [52-54].

Germanium-based functional groups have recently emerged as highly useful components for transition-metal-catalysed cross-couplings. Schoenebeck and co-workers have shown that Ge-based compounds are versatile reagents within chemoselective cross-coupling processes for the formation of a variety of C–C and C–X bonds [55-63]. Importantly, these transformations can take place in the presence of borylated functional groups, allowing orthogonal cross-coupling, whilst also offering excellent stability compared to boron-based reagents [57-67].

Based on their utility and stability, germanium units could therefore be useful within CuAAC reactions and offer potential as functional handles for downstream elaboration of CuAAC products. To date, the main use of germanyl alkynes in (3 + 2) cycloadditions has been limited to a small number of Huisgen (non-Cu-catalysed) reactions [68,69]. Zaitsev and co-workers reported the synthesis and CuAAC reactions of a dialkynyl germane to access 1,2-bis(triazolyl)tetraphenyldigermanes [70]. Here, we report the development of germanyl alkynes as CuAAC components, with exploration of their scope and downstream diversification.

Results and Discussion

We undertook an exploratory survey of CuAAC reaction conditions using benzyl azide and triethylgermanyl acetylene (see Supporting Information File 1). The most effective conditions were found to be based on the classical combination of CuSO4/NaAsc, with optimisation (see Supporting Information File 1) delivering the general conditions shown in Scheme 2. These afforded a clean conversion to the desired triazole products 121 without any observable degermylation or other side reactions that could be anticipated based on transmetalation to Cu [43].

[1860-5397-20-265-i2]

Scheme 2: Scope of germanyl acetylene CuAAC. Alkyne (1.0 equiv), azide (1.1 equiv), CuSO4·5H2O (5.0 mol %), NaAsc (50 mol %), NEt3 (1.0 equiv), t-BuOH/H2O 1:1 (250 mM), N2, rt, 16 h. Isolated yields. aReaction performed with CsF (2.0 equiv) as an additive. bReaction performed at rt for 64 h.

The generality of the CuAAC process was explored using a range of azides (Scheme 2a), with variation of the germanyl alkyne motif (Scheme 2b), and with variation of both components (Scheme 2c). In general, the CuAAC process worked effectively, tolerating the functional groups for which the CuAAC is well-known – in all cases the remaining mass balance was accounted for by the germanyl acetylene, suggesting sluggish CuAAC reactivity compared to other alkynes, which typically require much shorter reaction times. Extending the reaction time provided a higher conversion to the product 14. Yields were observed to be greater for aryl azides (e.g., 4 vs 6). Heterocycles such as pyridine (1), pyrimidine (10), phenothiazine (11), and chromene (12) were tolerated. Benzylic azides were accommodated including those bearing nitro (2), iodo (3), and boronic ester groups (5, 21). Strained rings were effective including cubane (18) and bicyclopentane (20). While 18 and 20 were isolated in lower yield, no evidence of ring opening was observed and the starting material could be recovered in each case, consistent with observations by Lam and MacMillan [71,72]. Variation of the steric and electronic parameters of the germanyl acetylene was straightforward (1417; Scheme 2b). Several limitations were observed (Scheme 2d): benzyl azides displaying an arylboronic acid and MIDA ester (22 and 23) gave no reaction, side reactions were observed with a dialkynyl germane (24), and the product derived from azide 25 was unstable to purification.

To further demonstrate the compatibility and utility of germanyl alkynes in CuAAC reactions, we applied the CuAAC process to more challenging substrates. Using fluorophore- and cholesterol-derived azides, coupling with the triethylgermanyl alkyne delivered the expected products 26 and 27, respectively, in good yield, enabling possible downstream diversification of these functional molecules of relevance to chemical biology (Scheme 3a).

[1860-5397-20-265-i3]

Scheme 3: (a) Application of Ge-alkyne CuAAC to functional molecules. (b) Functionalisation of germylated triazoles. Isolated yields unless stated. (i) Pd(PPh3)4 (10 mol %), 2-bromothiazole (1.2 equiv), KCl (3.0 equiv), PhMe/EtOH 4:1, N2, 100 °C, 16 h. NMR yield in parentheses. (ii) Pd2(dba)3 (2.5 mol %), iodobenzene (1.5 equiv), AgBF4 (1.5 equiv), DMF, N2, 80 °C, 16 h. (iii) NBS (2.0 equiv), DMF, air, rt, 2 h. (iv) Pd(dtbpf)Cl2 (10 mol %), 2-acetylthiophen-3-ylboronic acid (1.2 equiv), K3PO4 (2.0 equiv), iPrOH/H2O 3:4, N2, 85 °C, 16 h. (v) Pd(dtbpf)Cl2 (2.0 mol %), 1-naphthylzinc bromide (1.2 equiv), THF, N2, 45 °C, 16 h. (vi) Cu(OAc)2·H2O (30 mol %), B(OH)3 (2.0 equiv), DBU (2.0 equiv), MeCN, air, 70 °C, 24 h. (vii) Cu(OAc)2·H2O (30 mol %), B(OH)3 (2.0 equiv), piperidine (2.0 equiv), MeCN, air, 70 °C, 24 h. See Supporting Information File 1 for full details.

The utility of the germanyl triazole products was then assessed by subsequent derivatisation of exemplar compounds 15 and 21 (Scheme 3b). Chemoselective Suzuki–Miyaura cross-coupling of the BPin moiety in 21 was straightforward, giving 28 in excellent yield [73]. Similarly, cross-coupling of the GeEt3 moiety in 15 under conditions developed by Schoenebeck and co-workers gave 29 [57]. Bromodegermanylation using NBS employing conditions from Schoenebeck gave bromotriazoles 30 and 31 in moderate to excellent yield [62]. These could then undergo Suzuki–Miyaura cross-coupling to give 32 or chemoselective Negishi coupling to give 33 [74]. Finally, BPin 21 could be oxidised to the phenol derivative 34 or cross-coupled with piperidine under Chan–Lam conditions to give the aniline derivative 35 in good yield [75].

Conclusion

In summary, we have developed a general method towards the synthesis of germanyl triazoles. These reagents are generally compatible but seem to be less reactive than other classes of alkyne. The germanyl alkyne CuAAC is applicable to functional group-rich molecules, opening opportunities for downstream diversification by chemoselective functionalisation strategies [76]. The germanyl group installed in the triazole products can be used as a reactive handle for further diversification including cross-coupling reactions.

Supporting Information

The research data supporting this publication can be accessed at https://doi.org/10.17630/53959471-068e-483e-bcd4-920e6761926b and CCDC 2355570 contains the supplementary crystallographic data for this study.

Supporting Information File 1: Characterization data and copies of NMR spectra.
Format: PDF Size: 6.6 MB Download
Supporting Information File 2: Crystallographic information file (cif) for compound 13.
Format: CIF Size: 1.6 MB Download
Supporting Information File 3: Checkcif file for compound 13.
Format: PDF Size: 140.0 KB Download

Acknowledgements

We thank Dr. Aitor Maestro for assistance with starting material synthesis.

Funding

J.M.H.-M. thanks the EPSRC Centre for Doctoral Training EaSI-CAT for a Ph.D. studentship. T.M.R. thanks the EPSRC and the University of St Andrews for Ph.D. studentship. G.A.B., F.P., and A.J.B.W. thank the Leverhulme Trust (RPG-2020-380). A.J.B.W. thanks the Leverhulme Trust for a Research Fellowship (RF-2022-014) and the EPSRC Programme Grant ‘‘Boron: Beyond the Reagent’’ (EP/W007517/1) for support.

Author Contributions

John M. Halford-McGuff: conceptualization; data curation; formal analysis; investigation; validation; writing – original draft; writing – review & editing. Thomas M. Richardson: data curation; formal analysis; investigation; validation; writing – original draft; writing – review & editing. Aidan P. McKay: formal analysis; investigation. Frederik Peschke: formal analysis; investigation; methodology; writing – original draft; writing – review & editing. Glenn A. Burley: conceptualization; data curation; formal analysis; funding acquisition; project administration; resources; supervision; writing – original draft; writing – review & editing. Allan J. B. Watson: conceptualization; data curation; formal analysis; funding acquisition; project administration; resources; supervision; writing – original draft; writing – review & editing.

Data Availability Statement

Data generated and analyzed during this study is openly available at https://doi.org/10.17630/53959471-068e-483e-bcd4-920e6761926b.

References

  1. Tasdelen, M. A. Polym. Chem. 2011, 2, 2133–2145. doi:10.1039/c1py00041a
    Return to citation in text: [1]
  2. Eschenbrenner‐Lux, V.; Kumar, K.; Waldmann, H. Angew. Chem., Int. Ed. 2014, 53, 11146–11157. doi:10.1002/anie.201404094
    Return to citation in text: [1]
  3. Hoyle, C. E.; Bowman, C. N. Angew. Chem., Int. Ed. 2010, 49, 1540–1573. doi:10.1002/anie.200903924
    Return to citation in text: [1]
  4. Li, H.; Aneja, R.; Chaiken, I. Molecules 2013, 18, 9797–9817. doi:10.3390/molecules18089797
    Return to citation in text: [1]
  5. Kolb, H. C.; Finn, M. G.; Sharpless, K. B. Angew. Chem., Int. Ed. 2001, 40, 2004–2021. doi:10.1002/1521-3773(20010601)40:11<2004::aid-anie2004>3.0.co;2-5
    Return to citation in text: [1]
  6. Hatit, M. Z. C.; Reichenbach, L. F.; Tobin, J. M.; Vilela, F.; Burley, G. A.; Watson, A. J. B. Nat. Commun. 2018, 9, 4021. doi:10.1038/s41467-018-06551-0
    Return to citation in text: [1]
  7. Melo, A.; Monteiro, L.; Lima, R. M. F.; de Oliveira, D. M.; de Cerqueira, M. D.; El-Bachá, R. S. Oxid. Med. Cell. Longevity 2011, 467180. doi:10.1155/2011/467180
    Return to citation in text: [1]
  8. Meldal, M.; Tornøe, C. W. Chem. Rev. 2008, 108, 2952–3015. doi:10.1021/cr0783479
    Return to citation in text: [1] [2]
  9. Haldón, E.; Nicasio, M. C.; Pérez, P. J. Org. Biomol. Chem. 2015, 13, 9528–9550. doi:10.1039/c5ob01457c
    Return to citation in text: [1] [2]
  10. García-Álvarez, J.; Díez, J.; Gimeno, J. Green Chem. 2010, 12, 2127–2130. doi:10.1039/c0gc00342e
    Return to citation in text: [1] [2]
  11. Wang, K.; Bi, X.; Xing, S.; Liao, P.; Fang, Z.; Meng, X.; Zhang, Q.; Liu, Q.; Ji, Y. Green Chem. 2011, 13, 562–565. doi:10.1039/c0gc00848f
    Return to citation in text: [1]
  12. Fu, F.; Martinez, A.; Wang, C.; Ciganda, R.; Yate, L.; Escobar, A.; Moya, S.; Fouquet, E.; Ruiz, J.; Astruc, D. Chem. Commun. 2017, 53, 5384–5387. doi:10.1039/c7cc02504a
    Return to citation in text: [1]
  13. Nebra, N.; García-Álvarez, J. Molecules 2020, 25, 2015. doi:10.3390/molecules25092015
    Return to citation in text: [1]
  14. Vala, D. P.; Vala, R. M.; Patel, H. M. ACS Omega 2022, 7, 36945–36987. doi:10.1021/acsomega.2c04883
    Return to citation in text: [1]
  15. Cook, T. L.; Walker, J. A.; Mack, J. Green Chem. 2013, 15, 617–619. doi:10.1039/c3gc36720g
    Return to citation in text: [1]
  16. Girard, C.; Önen, E.; Aufort, M.; Beauvière, S.; Samson, E.; Herscovici, J. Org. Lett. 2006, 8, 1689–1692. doi:10.1021/ol060283l
    Return to citation in text: [1]
  17. Chtchigrovsky, M.; Primo, A.; Gonzalez, P.; Molvinger, K.; Robitzer, M.; Quignard, F.; Taran, F. Angew. Chem., Int. Ed. 2009, 48, 5916–5920. doi:10.1002/anie.200901309
    Return to citation in text: [1]
  18. Zhu, R.-Y.; Chen, L.; Hu, X.-S.; Zhou, F.; Zhou, J. Chem. Sci. 2020, 11, 97–106. doi:10.1039/c9sc04938j
    Return to citation in text: [1]
  19. Liu, E.-C.; Topczewski, J. J. J. Am. Chem. Soc. 2019, 141, 5135–5138. doi:10.1021/jacs.9b01091
    Return to citation in text: [1]
  20. Lal, K.; Yadav, P.; Kumar, A.; Kumar, A.; Paul, A. K. Bioorg. Chem. 2018, 77, 236–244. doi:10.1016/j.bioorg.2018.01.016
    Return to citation in text: [1]
  21. Rani, A.; Singh, G.; Singh, A.; Maqbool, U.; Kaur, G.; Singh, J. RSC Adv. 2020, 10, 5610–5635. doi:10.1039/c9ra09510a
    Return to citation in text: [1]
  22. Wright, M. H.; Sieber, S. A. Nat. Prod. Rep. 2016, 33, 681–708. doi:10.1039/c6np00001k
    Return to citation in text: [1]
  23. Sapienza, P. J.; Currie, M. M.; Lancaster, N. M.; Li, K.; Aubé, J.; Goldfarb, D.; Cloer, E. W.; Major, M. B.; Lee, A. L. ACS Chem. Biol. 2021, 16, 2766–2775. doi:10.1021/acschembio.1c00617
    Return to citation in text: [1]
  24. Döhler, D.; Michael, P.; Binder, W. H. Acc. Chem. Res. 2017, 50, 2610–2620. doi:10.1021/acs.accounts.7b00371
    Return to citation in text: [1]
  25. Meldal, M. Macromol. Rapid Commun. 2008, 29, 1016–1051. doi:10.1002/marc.200800159
    Return to citation in text: [1]
  26. Pacini, A.; Nitti, A.; Vitale, M.; Pasini, D. Int. J. Mol. Sci. 2023, 24, 7620. doi:10.3390/ijms24087620
    Return to citation in text: [1]
  27. Zaccaria, C. L.; Cedrati, V.; Nitti, A.; Chiesa, E.; Martinez de Ilarduya, A.; Garcia-Alvarez, M.; Meli, M.; Colombo, G.; Pasini, D. Polym. Chem. 2021, 12, 3784–3793. doi:10.1039/d1py00737h
    Return to citation in text: [1]
  28. Hatit, M. Z. C.; Sadler, J. C.; McLean, L. A.; Whitehurst, B. C.; Seath, C. P.; Humphreys, L. D.; Young, R. J.; Watson, A. J. B.; Burley, G. A. Org. Lett. 2016, 18, 1694–1697. doi:10.1021/acs.orglett.6b00635
    Return to citation in text: [1]
  29. Hatit, M. Z. C.; Seath, C. P.; Watson, A. J. B.; Burley, G. A. J. Org. Chem. 2017, 82, 5461–5468. doi:10.1021/acs.joc.7b00545
    Return to citation in text: [1]
  30. Seath, C. P.; Burley, G. A.; Watson, A. J. B. Angew. Chem., Int. Ed. 2017, 56, 3314–3318. doi:10.1002/anie.201612288
    Return to citation in text: [1]
  31. Rodionov, V. O.; Fokin, V. V.; Finn, M. G. Angew. Chem., Int. Ed. 2005, 44, 2210–2215. doi:10.1002/anie.200461496
    Return to citation in text: [1]
  32. Rostovtsev, V. V.; Green, L. G.; Fokin, V. V.; Sharpless, K. B. Angew. Chem., Int. Ed. 2002, 41, 2596–2599. doi:10.1002/1521-3773(20020715)41:14<2596::aid-anie2596>3.0.co;2-4
    Return to citation in text: [1]
  33. Hein, J. E.; Fokin, V. V. Chem. Soc. Rev. 2010, 39, 1302–1315. doi:10.1039/b904091a
    Return to citation in text: [1]
  34. Bunschoten, R. P.; Peschke, F.; Taladriz-Sender, A.; Alexander, E.; Andrews, M. J.; Kennedy, A. R.; Fazakerley, N. J.; Lloyd Jones, G. C.; Watson, A. J. B.; Burley, G. A. J. Am. Chem. Soc. 2024, 146, 13558–13570. doi:10.1021/jacs.4c03348
    Return to citation in text: [1]
  35. Huang, J.; Macdonald, S. J. F.; Harrity, J. P. A. Chem. Commun. 2009, 436–438. doi:10.1039/b817052e
    Return to citation in text: [1]
  36. Huang, J.; Macdonald, S. J. F.; Cooper, A. W. J.; Fisher, G.; Harrity, J. P. A. Tetrahedron Lett. 2009, 50, 5539–5541. doi:10.1016/j.tetlet.2009.07.085
    Return to citation in text: [1]
  37. Dai, C.; Cheng, Y.; Cui, J.; Wang, B. Molecules 2010, 15, 5768–5781. doi:10.3390/molecules15085768
    Return to citation in text: [1]
  38. Grob, J. E.; Nunez, J.; Dechantsreiter, M. A.; Hamann, L. G. J. Org. Chem. 2011, 76, 10241–10248. doi:10.1021/jo201973t
    Return to citation in text: [1]
  39. Jung, S. h.; Choi, K.; Pae, A. N.; Lee, J. K.; Choo, H.; Keum, G.; Cho, Y. S.; Min, S.-J. Org. Biomol. Chem. 2014, 12, 9674–9682. doi:10.1039/c4ob01967a
    Return to citation in text: [1]
  40. Zu, B.; Guo, Y.; He, C. J. Am. Chem. Soc. 2021, 143, 16302–16310. doi:10.1021/jacs.1c08482
    Return to citation in text: [1]
  41. Van Belois, A.; Maar, R. R.; Workentin, M. S.; Gilroy, J. B. Inorg. Chem. 2019, 58, 834–843. doi:10.1021/acs.inorgchem.8b02966
    Return to citation in text: [1]
  42. Li, J.; Tanaka, H.; Imagawa, T.; Tsushima, T.; Nakamoto, M.; Tan, J.; Yoshida, H. Chem. – Eur. J. 2024, 30, e202303403. doi:10.1002/chem.202303403
    Return to citation in text: [1]
  43. Lam, P. Y. S.; Deudon, S.; Hauptman, E.; Clark, C. G. Tetrahedron Lett. 2001, 42, 2427–2429. doi:10.1016/s0040-4039(01)00203-9
    Return to citation in text: [1] [2]
  44. Denmark, S. E.; Smith, R. C.; Chang, W.-T. T.; Muhuhi, J. M. J. Am. Chem. Soc. 2009, 131, 3104–3118. doi:10.1021/ja8091449
    Return to citation in text: [1]
  45. Denmark, S. E.; Regens, C. S. Acc. Chem. Res. 2008, 41, 1486–1499. doi:10.1021/ar800037p
    Return to citation in text: [1]
  46. Hirabayashi, K.; Mori, A.; Kawashima, J.; Suguro, M.; Nishihara, Y.; Hiyama, T. J. Org. Chem. 2000, 65, 5342–5349. doi:10.1021/jo000679p
    Return to citation in text: [1]
  47. Nakao, Y.; Takeda, M.; Matsumoto, T.; Hiyama, T. Angew. Chem., Int. Ed. 2010, 49, 4447–4450. doi:10.1002/anie.201000816
    Return to citation in text: [1]
  48. Hagiwara, E.; Gouda, K.-i.; Hatanaka, Y.; Hiyama, T. Tetrahedron Lett. 1997, 38, 439–442. doi:10.1016/s0040-4039(96)02320-9
    Return to citation in text: [1]
  49. Hatanaka, Y.; Hiyama, T. J. Org. Chem. 1988, 53, 918–920. doi:10.1021/jo00239a056
    Return to citation in text: [1]
  50. Denmark, S. E.; Wehrli, D. Org. Lett. 2000, 2, 565–568. doi:10.1021/ol005565e
    Return to citation in text: [1]
  51. Denmark, S. E.; Choi, J. Y. J. Am. Chem. Soc. 1999, 121, 5821–5822. doi:10.1021/ja9908117
    Return to citation in text: [1]
  52. Yamamoto, K.; Kanezashi, M.; Tsuru, T.; Ohshita, J. Polym. J. 2017, 49, 401–406. doi:10.1038/pj.2016.128
    Return to citation in text: [1]
  53. Venkatesh, G. B.; Hari Prasad, S. Phosphorus, Sulfur Silicon Relat. Elem. 2015, 190, 335–341. doi:10.1080/10426507.2014.947405
    Return to citation in text: [1]
  54. Li, L.; Shang, T.; Ma, X.; Guo, H.; Zhu, A.; Zhang, G. Synlett 2015, 26, 695–699. doi:10.1055/s-0034-1379970
    Return to citation in text: [1]
  55. Fricke, C.; Schoenebeck, F. Acc. Chem. Res. 2020, 53, 2715–2725. doi:10.1021/acs.accounts.0c00527
    Return to citation in text: [1]
  56. Rogova, T.; Ahrweiler, E.; Schoetz, M. D.; Schoenebeck, F. Angew. Chem., Int. Ed. 2024, 63, e202314709. doi:10.1002/anie.202314709
    Return to citation in text: [1]
  57. Fricke, C.; Sherborne, G. J.; Funes‐Ardoiz, I.; Senol, E.; Guven, S.; Schoenebeck, F. Angew. Chem., Int. Ed. 2019, 58, 17788–17795. doi:10.1002/anie.201910060
    Return to citation in text: [1] [2] [3]
  58. Dahiya, A.; Schoetz, M. D.; Schoenebeck, F. Angew. Chem., Int. Ed. 2023, 62, e202310380. doi:10.1002/anie.202310380
    Return to citation in text: [1] [2]
  59. Dahiya, A.; Gevondian, A. G.; Schoenebeck, F. J. Am. Chem. Soc. 2023, 145, 7729–7735. doi:10.1021/jacs.3c01081
    Return to citation in text: [1] [2]
  60. Dahiya, A.; Fricke, C.; Schoenebeck, F. J. Am. Chem. Soc. 2020, 142, 7754–7759. doi:10.1021/jacs.0c02860
    Return to citation in text: [1] [2]
  61. Sherborne, G. J.; Gevondian, A. G.; Funes‐Ardoiz, I.; Dahiya, A.; Fricke, C.; Schoenebeck, F. Angew. Chem., Int. Ed. 2020, 59, 15543–15548. doi:10.1002/anie.202005066
    Return to citation in text: [1] [2]
  62. Fricke, C.; Deckers, K.; Schoenebeck, F. Angew. Chem., Int. Ed. 2020, 59, 18717–18722. doi:10.1002/anie.202008372
    Return to citation in text: [1] [2] [3]
  63. Kaithal, A.; Sasmal, H. S.; Dutta, S.; Schäfer, F.; Schlichter, L.; Glorius, F. J. Am. Chem. Soc. 2023, 145, 4109–4118. doi:10.1021/jacs.2c12062
    Return to citation in text: [1] [2]
  64. Luo, Y.; Tian, T.; Nishihara, Y.; Lv, L.; Li, Z. Chem. Commun. 2021, 57, 9276–9279. doi:10.1039/d1cc03907e
    Return to citation in text: [1]
  65. Xu, Q.-H.; Xiao, B. Org. Chem. Front. 2022, 9, 7016–7027. doi:10.1039/d2qo01467j
    Return to citation in text: [1]
  66. Li, W.-F.; Xu, Q.-H.; Miao, Q.-Y.; Xiao, B. J. Org. Chem. 2024, 89, 16269–16281. doi:10.1021/acs.joc.3c02348
    Return to citation in text: [1]
  67. Han, A.-C.; Xiao, L.-J.; Zhou, Q.-L. J. Am. Chem. Soc. 2024, 146, 5643–5649. doi:10.1021/jacs.3c14386
    Return to citation in text: [1]
  68. Piterskaya, Y. L.; Khramchikhin, A. V.; Stadnichuk, M. D. Zh. Obshch. Khim. 1996, 66, 1188–1194.
    Return to citation in text: [1]
  69. Demina, M. M.; Nguyen, T. L. H.; Shaglaeva, N. S.; Mareev, A. V.; Medvedeva, A. S. Russ. J. Org. Chem. 2012, 48, 1582–1584. doi:10.1134/s1070428012120196
    Return to citation in text: [1]
  70. Zaitsev, K. V.; Veshchitsky, G. A.; Oprunenko, Y. F.; Kharcheva, A. V.; Moiseeva, A. A.; Gloriozov, I. P.; Lermontova, E. K. Chem. – Asian J. 2023, 18, e202300753. doi:10.1002/asia.202300753
    Return to citation in text: [1]
  71. Smith, E.; Jones, K. D.; O’Brien, L.; Argent, S. P.; Salome, C.; Lefebvre, Q.; Valery, A.; Böcü, M.; Newton, G. N.; Lam, H. W. J. Am. Chem. Soc. 2023, 145, 16365–16373. doi:10.1021/jacs.3c03207
    Return to citation in text: [1]
  72. Wiesenfeldt, M. P.; Rossi-Ashton, J. A.; Perry, I. B.; Diesel, J.; Garry, O. L.; Bartels, F.; Coote, S. C.; Ma, X.; Yeung, C. S.; Bennett, D. J.; MacMillan, D. W. C. Nature 2023, 618, 513–518. doi:10.1038/s41586-023-06021-8
    Return to citation in text: [1]
  73. Pérez‐Perarnau, A.; Preciado, S.; Palmeri, C. M.; Moncunill‐Massaguer, C.; Iglesias‐Serret, D.; González‐Gironès, D. M.; Miguel, M.; Karasawa, S.; Sakamoto, S.; Cosialls, A. M.; Rubio‐Patiño, C.; Saura‐Esteller, J.; Ramón, R.; Caja, L.; Fabregat, I.; Pons, G.; Handa, H.; Albericio, F.; Gil, J.; Lavilla, R. Angew. Chem., Int. Ed. 2014, 53, 10150–10154. doi:10.1002/anie.201405758
    Return to citation in text: [1]
  74. Wang, C.; Tobrman, T.; Xu, Z.; Negishi, E.-i. Org. Lett. 2009, 11, 4092–4095. doi:10.1021/ol901566e
    Return to citation in text: [1]
  75. Vantourout, J. C.; Miras, H. N.; Isidro-Llobet, A.; Sproules, S.; Watson, A. J. B. J. Am. Chem. Soc. 2017, 139, 4769–4779. doi:10.1021/jacs.6b12800
    Return to citation in text: [1]
  76. Peschke, F.; Taladriz-Sender, A.; Andrews, M. J.; Watson, A. J. B.; Burley, G. A. Angew. Chem., Int. Ed. 2023, 62, e202313063. doi:10.1002/anie.202313063
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities