Advances in nitrogen-containing helicenes: synthesis, chiroptical properties, and optoelectronic applications

  1. ,
  2. ,
  3. ORCID Logo ,
  4. and
  5. ORCID Logo
College of Chemistry, Beijing Normal University, Xinjiekouwaidajie 19, Beijing, 100875, China
  1. Corresponding author email
Associate Editor: N. Yoshikai
Beilstein J. Org. Chem. 2025, 21, 1422–1453. https://doi.org/10.3762/bjoc.21.106
Received 28 Apr 2025, Accepted 26 Jun 2025, Published 11 Jul 2025
Review
cc by logo
Album

Abstract

Helicenes, a class of non-planar polycyclic aromatic hydrocarbons composed of ortho-fused aromatic rings forming helical architectures, have attracted considerable attention due to their intrinsic chirality and tunable optoelectronic properties. Among them, nitrogen-doped helicenes (azahelicenes) and their heteroatom-co-doped counterparts – such as B/N-, O/N-, S/N-, and Se/N-doped helicenes – have emerged as highly versatile scaffolds for chiral optoelectronic applications. The incorporation of nitrogen enables precise modulation of electronic structures, redox characteristics, and intermolecular interactions, thereby enhancing performance in circularly polarized luminescence (CPL), thermally activated delayed fluorescence (TADF), and chiral sensing. Notably, recent developments have yielded π-extended, structurally robust, and stimuli-responsive azahelicenes exhibiting record-high dissymmetry factors (|gabs| and |glum|), elevated CPL brightness (BCPL), and efficient integration into CPL-OLEDs and redox-switchable emitters. Boron–nitrogen co-doping strategies, in particular, have facilitated the development of materials with ultra-narrowband emissions, near-unity photoluminescence quantum yields, and electroluminescence dissymmetry factors (|gEL|) exceeding 10−3. Likewise, heteroatom co-doping with oxygen, sulfur, or selenium enables spectral tuning across the visible to near-infrared range, improved photostability, and dual-state emissive behavior. In parallel, significant progress in synthetic methodologies – including enantioselective catalysis, electrochemical cyclizations, and multicomponent reaction systems – has granted access to increasingly complex helicene frameworks with well-defined chirality. This review systematically summarizes recent advancements in the synthesis, structural engineering, and chiroptical performance of nitrogen-doped helicenes and their heteroatom-doped derivatives, emphasizing their potential as next-generation chiral optoelectronic materials and outlining future directions toward multifunctional integration and quantum technological applications.

Introduction

Helicenes, a class of non-planar polycyclic aromatic hydrocarbons characterized by ortho-fused aromatic rings forming a helical framework, have attracted significant attention due to their inherent chirality, unique optoelectronic properties, and wide-ranging applications in asymmetric catalysis , molecular recognition , and organic electronics . In recent years, the incorporation of heteroatoms – particularly nitrogen – into the helicene backbone, giving rise to so-called "azahelicenes", has emerged as a powerful strategy to modulate electronic structures, enhance solubility, and expand functional diversity . Substituting carbon atoms with electron-deficient nitrogen atoms introduces new opportunities to fine-tune redox potentials, charge-transport behavior, and intermolecular interactions . These modifications have proven especially valuable in applications such as organic light-emitting diodes (OLEDs) , circularly polarized luminescence (CPL) , and chiral photocatalysis . In the past decade, heteroatom-containing helicenes have attracted increasing attention due to their tunable optoelectronic properties and potential applications in chiral optoelectronics. Several comprehensive reviews have examined specific classes of these molecules. Crassous and co-workers provided a detailed overview of heterohelicenes up to 2019, focusing on their structural diversity and functional applications . Nowak-Król and colleagues reviewed boron-doped helicenes, emphasizing their roles in chiral materials design , while Maeda and Ema explored the circularly polarized luminescence (CPL) properties of azahelicenes . However, despite these valuable contributions, a dedicated and up-to-date overview of nitrogen-doped helicenes – particularly those incorporating additional heteroatoms within the helical π-conjugated framework – remains lacking.

This review addresses this gap by systematically summarizing recent advances (from the past five years) in the synthesis, structural modification, and chiroptical properties of nitrogen-doped helicenes. Particular attention is given to multi-heteroatom systems co-doped with elements such as boron, oxygen, sulfur, and selenium, highlighting their influence on CPL performance and structure–property relationships. We classify the nitrogen-doped helicenes into only N-containing helicenes, B,N-containing helicenes, and X,N-containing helicenes (X = O, S or Se). In each section, structurally similar compounds are categorized into groups to facilitate comparison. Then, the others are discussed in chronological order based on their reported publication dates, with attribution to the respective research groups. Notably, helicenes bearing nitrogen atoms located outside the conjugated system are excluded from this discussion to maintain a consistent focus on electronically integrated heteroatom-doped architectures.

Review

N-Containing helicenes

Among nitrogen-containing helicenes, HBC-fused azahelicenes represent a particularly significant subclass due to their extended π-conjugation and potential for enhanced chiroptical properties. Over the past few years, multiple research groups have investigated their synthesis, structural characteristics, and optoelectronic behavior. Notably, in 2021, Jux and co-workers reported a series of superhelicenes that combine helical and planar π-systems. However, the structural characterization of compound 1 (Table 1) was impeded by its inherent instability, limiting further analysis . In 2024, Liu’s group developed a series of nonalternant nanographenes 2ac featuring a nitrogen-embedded cyclopenta[ef]heptalene core . These compounds exhibit λabs at 363, 452, and 580 nm, and PLQYs of 0.05, 0.33, and 0.32, respectively. While compounds 2a and 2b display broad emission near 505 nm, 2c shows dual-emission peaks at 588 and 634 nm with an ultranarrow FWHM of 22 nm. Notably, 2b and 2c demonstrate strong chiroptical activity with |gabs| values of 6.7 × 10−3 and 1.0 × 10−2, |glum| of 2.4 × 10−3 and 7.0 × 10−3, and BCPL values of 9.1 and 95.2 M−1 cm−1, respectively. Shortly thereafter, Gong’s group further expanded the π-system by constructing a tris-hexabenzo[7]helicene 3 with a carbazole core, which emits at 595/628 nm (PLQY = 0.40), displays |gabs| = 2.98 × 10−3, and achieves a BCPL of 32.5 M−1 cm−1 . In 2025, Babu’s group synthesized two regioisomeric π-extended azahelicenes, 4a and 4b, which differ in the position of attachment to the carbazole core . Compared to 4a, compound 4b exhibits bathochromic shifts of 12 nm in absorption and 45 nm in emission, as well as a higher ΦF (0.75 vs 0.68). Both isomers display TADF at room temperature and phosphorescence at 77 K. Notably, 4a demonstrates a long-lived red afterglow persisting for up to 30 seconds. In contrast, 4b exhibits superior chiroptical properties, with |gabs| and |glum| values of 3.91 × 10−3 and 1.12 × 10−3, respectively, and an impressive BCPL of 45.77 M−1 cm−1 (Table 1).

Table 1: Structures and optical properties of compounds 1, 2ac, 3, and 4a,b.a

[Graphic 1]
compound λabs(max) [nm] λem [nm] ФF |gabs| |glum| BCPL [M−1 cm−1]
2a 363 508 0.05
2b 452 503 0.33 6.7 × 10−3 2.4 × 10−3 9.1
2c 580 588, 634 0.32 1.0 × 10−2 7.0 × 10−3 95.2
3 525 595, 628 0.40 2.98 × 10−3 4.3 × 10−4 32.5
4a 497 497, 531, 570 0.677
4b 522 542, 581, 630 0.754 3.91 × 10−3 1.12 × 10−3 45.77

aCompound 1 is unstable and characterized only by mass spectrometry.

In 2021, several research groups reported structurally diverse heterohelicene systems exhibiting distinctive chiroptical and photophysical properties, highlighting the expanding potential of these molecules in chiral optoelectronics. Yorimitsu’s group developed a series of dihetero[8]helicenes through a systematic asymmetric synthesis. Among these, diaza[8]helicene 5 exhibited pronounced chiroptical activity, with absorption and emission maxima (λabs = 399 nm, λem = 405 nm), a fluorescence quantum yield (ΦF) of 0.13, and high dissymmetry factors (|gabs| = 1.9 × 10−2, |gabs| = 9.5 × 10−3 at 403 nm) (Table 2). Miura and co-workers employed Pd(II)/Ag(I)-catalyzed cyclizations to construct azahelicenes, with compound 6 exhibiting enhanced chiroptical performance and protonation-induced CPL amplification . Meanwhile, Audisio’s team developed heterohelicenes via regioselective [3 + 2]-cycloadditions, with compound 7 displaying pH-responsive CPL sign inversion (|glum| = +1.1 × 10−3 at 430 nm, −1.2 × 10−3 at 585 nm) attributed to reversible intramolecular charge transfer . In parallel, several groups explored the functional versatility of heterohelicenes in device-oriented and sensing applications. Crassous’s group synthesized bipyridine-embedded helicenes via the Mallory reaction, enabling coordination with Ru(II) to form NIR-emissive complexes that exhibit redox-responsive chiroptical switching, notably with complex 8 showing reversible electronic circular dichroism (ECD) upon oxidation . Liao and co-workers introduced a narrowband CP-TADF emitter 9, characterized by a narrow emission bandwidth (FWHM = 36 nm), |glum| = 1.1 × 10−3, |gEL| = 1.5 × 10−3, and an external quantum efficiency (EQE) of 0.14 – demonstrating promise for CPL-OLED applications . Wanichacheva’s team reported urazole-functionalized aza[5]helicene 10, exhibiting selective Fe(III) sensing, marked solvatochromism, and a large Stokes shift (85 nm) with emission at 530 nm in DMSO (Table 2). Collectively, these studies underscore the structural versatility and functional tunability of heterohelicenes, establishing them as robust platforms for advanced chiral optoelectronic materials. Their diverse response to external stimuli, modular synthetic accessibility, and strong CPL performance render them ideal candidates for applications in molecular sensing, stimuli-responsive switches, and next-generation CPL-active devices.

Table 2: Structures and optical properties of compounds 510.

[Graphic 2]
compound λabs(max) [nm] λem [nm] ФF |gabs| |glum|
5 399 405, 430, 460 0.13 1.9 × 10−2 9.5 × 10−3
6 405 420, 439 0.14 1.1 × 10−2 4.4 × 10−3
7 430 436, 460, 500 0.10 1.1 × 10−3
8 (M,Λ,Λ) 522 788 0.10
(P,Λ,Λ) 512 786 0.25
9 440 467 0.47a 1.1 × 10−3
10 400 485

aAs detected in film.

In 2021, Ema’s group reported the synthesis of carbazole-based azahelicenes 11ae via intramolecular Scholl reactions (Table 3). All compounds exhibited strong absorption in the UV–vis region (250–450 nm) and fluorescence emission between 400–550 nm. Among these, compound 11c, a saddle-shaped dibenzodiaza[8]circulene, was particularly noteworthy as the first example of its kind synthesized in solution and structurally confirmed via single-crystal X-ray diffraction. It demonstrated the highest CPL performance among the series, with a |glum| value of 3.5 × 10−3 and a photoluminescence quantum yield (PLQY) of 0.31, indicating its potential as a chiral emissive material. Building upon this foundation, the same group in 2024 developed a series of structurally refined aza[7]helicenes (compounds 12a and 12b) under modified Scholl reaction conditions . These products were obtained as optically active diastereomers, which were successfully separated using silica gel chromatography. Additionally, two cyclic dimers, designated as compounds 12c and 12d, were isolated, exhibiting strong absorption bands at 493 and 474 nm, high PLQYs of 0.61 and 0.54, and notable CPL activity (|glum| = 0.74 × 10−3 and 1.3 × 10−3, respectively), with corresponding brightness values (BCPL) reaching 19 and 31 M−1 cm−1 (Table 3). Importantly, both dimers displayed selective fluoride ion recognition through hydrogen bonding, with (M,M)-12c exhibiting a high binding constant (Ka = 2 × 105 M−1). The resulting [12c·F] and [12d·F] complexes exhibited red-shifted circular dichroism (CD), fluorescence, and CPL spectra, underscoring the capability of helicene-based frameworks for anion-responsive chiroptical modulation. These findings highlight how precise structural design and supramolecular engineering can facilitate the development of high-performance, stimuli-responsive chiral luminophores.

Table 3: Structures and optical properties of 11ae and 12ad.

[Graphic 3]
compound λabs(max) [nm] λem [nm] ФF |gabs| |glum| BCPL [M−1 cm−1]
11a 418 432, 454 0.28 4.9 × 10−3 3.2 × 10−3
11b 419 432, 455 0.27 5.9 × 10−3 3.4 × 10−3
11c 419 432, 456 0.31 5.4 × 10−3 3.5 × 10−3
11d 422 458, 480 0.10 3.2 × 10−3 3.9 × 10−4
11e 412 456 0.24 4.5 × 10−4 2.9 × 10−4
12a 436 447, 474 0.45 4.8 × 10−3 2.6 × 10−3 6.7
12b 423 431, 456 0.32 3.8 × 10−3 2.2 × 10−3 2.8
12c 494 502, 536 0.64 2.4 × 10−3 6.5 × 10−4 19
12d 475 485, 514 0.54 2.7 × 10−3 1.4 × 10−3 31

In 2022, Zhang and co-workers reported a nitrogen-embedded quintuple [7]helicene 13, constructed by hybridizing helicene and azacorannulene π-systems (Table 4). Compound 13 exhibited distinct absorption bands at 408, 611, and 715 nm, with strong near-infrared (NIR) fluorescence centered at 770 nm and a PLQY value of 0.28. Upon coordination with tris(4-bromophenyl)aminium hexachloroantimonate (BAHA), a new absorption band emerged around 900 nm, extending to 1300 nm, indicative of charge-transfer processes. The enantiomers of 13 displayed mirror-image CD signals and showed excellent dispersibility in polar solvents, highlighting their potential for NIR bio-imaging applications. In parallel, Církva’s group synthesized a series of aza[n]helicenes 14ad via photocyclodehydrochlorination . These compounds exhibited dual fluorescence bands, with emission red-shifting progressively with increasing helical length. Protonation further induced red-shifted emission, with compound 14d-H+ emitting at 542 nm. However, PLQYs decreased significantly from 0.078 to 0.006 with longer helicenes. The CD spectra of 14c and 14d were found to resemble their carbohelicene analogues, underscoring the structural fidelity and chiroptical retention upon nitrogen incorporation. Qian’s group developed a series of azahelicenes 15ad through Bischler–Napieralski cyclization . Notably, compound 15b displayed a high interconversion barrier of 36.0 kcal mol−1, enabling enantiomeric resolution. All compounds exhibited visible-range fluorescence (400–500 nm) and structured UV–vis absorption spectra. Importantly, 15b showed acid/base-switchable UV and CD spectra, suggesting potential for use in responsive optoelectronic systems. Hu’s group reported an X-shaped double [7]helicene 16 functionalized with four triazole units, which demonstrated absorption at 368 and 516 nm, strong emission at 553 nm, a high PLQY of 0.96, |gabs| of 1.1 × 10−2, |glum| of 9.1 × 10−4, and BCPL of 30.1 M−1 cm−1 – surpassing the performance of its all-carbon and thiadiazole counterparts . In a related study, Hu’s team synthesized double aza[5]helicenes 17a and 17b, among which compound 17b exhibited red-shifted emission (538–632 nm in CHCl3) and the largest Stokes shift (192 nm), attributed to extended conjugation and sulfur incorporation (Table 4). These findings collectively underscore how structural modulation and heteroatom doping can tailor the optical, chiroptical, and stimuli-responsive behavior of azahelicenes, providing strategic design avenues for next-generation chiral optoelectronic materials.

Table 4: Structures and optical properties of 13, 14ad, 15ad, 16, and 17a,b.

[Graphic 4]
compound λabs(max) [nm] λem [nm] ФF |gabs| |glum| BCPL [M−1 cm−1]
13 715 770 0.28
14a 313 380, 399 0.077
14b 302 410, 431 0.120
14c 311 421, 443 0.067
14d 337 443, 467 0.029
15a 398 408, 430
15b 404 408, 434
15c 407 413, 437
15d 424 434, 456
16 516 553 0.96 1.1 × 10−2 9.1 × 10−4 30.1
17a 328 458 0.010
17b 440 632 0.014

In 2023, Langer’s group synthesized a series of double aza[4,6]helicenes 18al featuring diverse peripheral substituents through a one-pot, multistep synthetic protocol (Table 5). Selected compounds such as 18b, 18c, 18d and 18l exhibit similar λabs around 410 nm and emit fluorescence centered near 530 nm, demonstrating consistent optical profiles despite structural variation. In a parallel effort, Yang’s group developed an efficient, enantioselective synthetic approach toward azahelicenes via a chiral phosphoric acid-catalyzed multicomponent Povarov reaction or oxidative aromatization . Among the synthesized compounds, compound 19 displayed dual absorption bands at 260 and 325 nm and emission peaks at 420 and 440 nm, which red-shifted to approximately 500 nm upon trifluoroacetic acid treatment. Both the neutral and protonated forms of 19 exhibited mirror-image CD and CPL spectra, with high |glum| values of 1.4 × 10−3 and 1.3 × 10−3, respectively, underscoring their potential for responsive chiral optoelectronic applications. Concurrently, Liu and Ishigaki’s groups independently reported a class of highly twisted nitrogen-doped heptalene derivatives (e.g., compound 20a), which exhibit consistent absorption at 315 nm and blue fluorescence centered near 450 nm, regardless of the substituents. These compounds display redox and electronic behaviors reminiscent of nitrogen-doped azulenes, featuring strong absorption dissymmetry factors (|gabs|) at 345 nm – 1.2 × 10−2 for compound 20a, 1.0 × 10−2 for 20d, and 1.3 × 10−2 for 20e (Table 5). Notably, the radical cation form of compound 20e (20e•+) exhibits pronounced CD signals extending into the near-infrared region, suggesting potential for redox-responsive chiral photonic systems.

Table 5: Structures and optical properties of 18al,19, and 20ae.

[Graphic 5]
compound λabs(max) [nm] λem [nm] ФF |gabs| |glum|
18b 411 530 0.15
18c 409 520 0.16
18d 419 525 0.17
18i 413 525 0.14
19 325 420, 440 1.4 × 10−3
20a 315a, 320b 447 1.2 × 10−2
20b 315 459
20c 315 446
20d 320 1.0 × 10−2
20e 321 1.3 × 10−2

aBased on reports from Liu's group; bbased on reports from Ishigaki's group.

In 2023, Chen’s group reported three nitrogen–nitrogen (NN)-embedded azahelicenes 21ac, among which compound 21c, a structurally defined antiaromatic double aza[7]helicene – exhibited distinctive long-wavelength optical and chiroptical properties (Table 6). In the solid state, 21c emitted in the far-red region at 641 nm (ΦF = 0.10) and demonstrated CPL with |glum| = 2.04 × 10−4. In solution, 21c showed a strong absorption band at 560 nm and a high ФF value of 0.86 at 583 nm, yielding a BCPL value of 13.2 M−1 cm−1. Notably, compound 21c undergoes reversible redox interconversion to its radical cation 21c•+ and dicationic 21c2+ states via chemical oxidation, enabling controllable switching between antiaromatic and aromatic configurations. These results provide a compelling strategy for engineering redox-switchable chiral luminophores. In 2024, the same research group expanded on this redox-responsive platform by constructing a polycationic open-shell cyclophane 22, comprising carbazole-embedded aza[7]helicene subunits . Compound 22 displays intense fluorescence (ΦF = 0.99), exceptionally high BCPL as 100.2 M−1 cm−1, and marked chiroptical activity (|gabs| = 2.50 × 10−3 at 435 nm; |glum| = 5.00 × 10−3 at 460 nm) (Table 6). Upon mild oxidation, neutral 22 undergoes stepwise conversion into highly charged, multispin open-shell species 222+2• and 224+4•, preserving strong chiroptical signals. This study presents a novel approach to constructing stable, redox-switchable chiral luminophores based on extended azahelicene architectures, offering broad potential for molecular electronics and spintronic devices.

Table 6: Structures and optical properties of 21ac and 22.

[Graphic 6]
compound λabs(max) [nm] λem [nm] ФF |gabs| |glum| BCPL [M−1 cm−1]
21a 408 423 0.26 9.78 × 10−4
21a in film ≈410 449 0.15
21b 495 521 0.77
21b in film ≈500 548 0.63
21c 560 583 0.86 4.76 × 10−4 2.22 × 10−4 13.2
21c in film ≈570 641 0.10 2.04 × 10−4
22 438 480 0.99 2.50 × 10−3 5.00 × 10−3 100.2

In 2024, Qiu’s group synthesized π-extended diaza[7]helicenes 23af incorporating dual heptagonal rings . Compound 23a exhibits dynamic chirality, aggregation-induced emission (AIE), and intense CPL (|glum| = 1.7 × 10−2), whereas compound 23f, with lateral π-extension, shows enhanced thermal stability and green emission at 517 nm (Table 7). Kuehne and co-workers reported two radical aza[7]helicenes, 24a and 24b, exhibiting distinct photophysical behaviors . Compound 24b features a higher PLQY (0.43), while 24a demonstrates doublet-state CPL (|glum| = 5.0 × 10−4), highlighting the potential of helicene radicals for spintronic applications. Meng’s group synthesized carbonyl-nitrogen embedded hetero[7]helicenes 25a and 25b bearing axial chirality . Compound 25a displays excellent optical characteristics with ΦF = 0.57, |gabs| = 1.7 × 10−2, |glum| = 1.4 × 10−3, and a BCPL of 8.94 M−1 cm−1. Then, Chen’s group contributed triple aza[6]helicenes 26a and 26b with |glum| values of approximately 3.0 × 10−3, offering new architectures for CPL-active helicenes . Singh’s group developed fluorophore-conjugated aza[7]helicenes 27ad, with 27b demonstrating pronounced intramolecular charge transfer (ICT), a high ΦF of 0.71 and an extended fluorescence lifetime (τ) of 15.5 ns . Wu’s group synthesized a family of expanded azahelicenes 28ae, where increasing helical length leads to red-shifted emission, prolonged lifetime, and attenuated PLQY . Nonetheless, these compounds exhibit outstanding chiroptical performance, with |gabs|max reaching 4.8 × 10−2, |glum|max = 2.1 × 10−2, and BCPL values up to 76 M−1 cm−1. Collectively, these investigations underscore the efficacy of heteroatom doping, extended π-conjugation, and radical design in advancing azahelicene-based systems. These approaches significantly enhance optical and chiroptical performance, paving the way for high-efficiency chiral optoelectronic and quantum materials.

Table 7: Structures and optical properties of 23af, 24a,b, 25a,b, 26a,b, 27ad, and 28ae.

[Graphic 7]
compound λabs(max) [nm] λem [nm] ФF |gabs| |glum| BCPL [M−1 cm−1]
23a 360 625 1.7 × 10−2a
23f 462 517 2.0 × 10−3
24a 642 696 0.34 4.4 × 10−4 5 × 10−4 0.25
24b 655 712 0.43 1 × 10−4
25a 506 525 0.57 1.7 × 10−2 1.4 × 10−3 8.94
25b 513 535 0.55 2.2 × 10−2 8 × 10−4 4.29
26a 388 506, 530 0.055 1.2 × 10−2 3.0 × 10−3
26b 393 508, 532 0.058 1.4 × 10−2 3.2 × 10−3
27a 483 524 0.38
27b 487 539 0.71
27c 459 590 0.24
27d 470 611 0.53
28a 414 496, 532 0.152
28b ≈475 511, 543 0.116 4.4 × 10−2 3 × 10−3 16
28c ≈475 522, 550 0.089 4.8 × 10−2 1.4 × 10−2 61
28d ≈475 530, 554 0.066 4.3 × 10−2 2.1 × 10−2 76
28e ≈475 530, 555 0.034

aIn the aggregated state.

In 2024, Kivala’s group selectively synthesized highly distorted [6]helicenes 29a and 29b incorporating azocine units via a regioselective Beckmann rearrangement from oxime precursor 29c (Table 8). For comparative evaluation, the corresponding lactams 29d and 29e and amines 29f and 29g were also obtained. Compounds 29a and 29b exhibit λabs centered at 513 nm, while the amines 29f and 29g display high ФF values of 0.48 and 0.56, respectively. Notably, azocine derivative 29b exhibits the highest CPL activity among the series, with a |glum| value of 1.6 × 10−3. In addition, both 29a and 29b demonstrate redox activity, undergoing reversible formation of radical anions, dianions, and radical cations. The radical cation 29b•+, in particular, exhibits a broad near-infrared (NIR) absorption band extending to 3000 nm, highlighting its potential for NIR optoelectronic applications. Building on this work, in 2025 the same group reported the synthesis of a stable N-heterotriangulene dimer (compound 30) bridged by a rigid π-conjugated [5]helicene . This chiral dimer undergoes reversible stepwise oxidation to 30•+ and 302+, accompanied by pronounced NIR Cotton effects extending up to 2000 nm. These results provide critical insights into the rational design of redox-switchable, NIR-active chiral molecular systems, underscoring their promise in advanced optoelectronic and spintronic technologies.

Table 8: Structures and optical properties of 29af and 30.a

[Graphic 8]
compound λabs(max) [nm] λem [nm] ФF |gabs| |glum| BCPL [M−1 cm−1]
29a 513 540, 565 0.01 2.5 × 10−3
29b 513 552, 582 0.12 1.9 × 10−3 1.6 × 10−3
29d 510 539, 570 0.52 3.0 × 10−3 6.0 × 10−4
29e 510 543, 575 0.51 2.1 × 10−3 2.4 × 10−4
29f 510 536, 570 0.48 2.0 × 10−3 9.1 × 10−4
29g 547 609, 652 0.56 2.4 × 10−3 6.0 × 10−4
30 495 534 0.42 1.25 × 10−3 1.1 × 10−3 7.00

aThe optical properties of compound 29c are not mentioned in the original paper.

In 2024, Tanaka’s group synthesized and characterized a series of length-variable aza[n]helicenes 31af via a one-pot intramolecular cyclodehydrogenation (Table 9). Notably, compounds 31e and 31f represent the first examples of triple-layered heterohelicenes with fully conjugated frameworks. All members of the series demonstrate high solubility, attributed to intermolecular hydrogen bonding with solvent molecules. With increasing helical length, both the λabs and λem exhibit progressive bathochromic shifts, while the ФF values systematically decline, without clear saturation within the investigated range. Chiroptical measurements of the N-butylated aza[n]helicenes 31gj reveal |gabs| and |glum| values on the order of 10−3. These findings address long-standing challenges in the synthesis and stabilization of extended heterohelicenes, paving the way for the development of structurally persistent, π-extended chiral materials. In a parallel effort, Tanaka’s group synthesized benzannulated double aza[9]helicene 32a and its alkylated derivatives 32b and 32c via a one-pot oxidative fusion strategy . Compared to the parent compound 32aF = 0.07), compounds 32b and 32c exhibit significantly enhanced ΦF (0.35), red-shifted absorption bands, and |gabs| values of 2.4 × 10−3 and 2.3 × 10−3 at 345 nm, respectively. Their corresponding BCPL values reach 16.0 and 19.2 M−1 cm−1. Furthermore, terminus-functionalized aza[9]helicenes 33a, 33b, and 33c were prepared to investigate interlayer interactions . Among them, the pyrene-decorated compound 33c displays red-shifted emission and prolonged fluorescence lifetimes as solvent polarity increases, indicating enhanced excited-state stabilization. Collectively, these studies offer valuable strategies for stabilizing long π-extended helicenes and finely tuning their chiroptical and emissive properties, thereby advancing their application in multifunctional chiral photonic and sensing platforms.

Table 9: Structures and optical properties of 31aj, 32ac, and 33ac.

[Graphic 9]
compound λabs(max) [nm] λem [nm] ФF |gabs| |glum| BCPL [M−1 cm−1]
31a 412 437, 466, 500 0.21
31b 425 452, 479, 514 0.17
31c 438 427, 450, 480 0.11
31d 451 466, 491, 530 0.09
31e 388 483, 511 0.18
31f 310 508 0.08
31g 409 465, 495 0.16 5.6 × 10−3 4.5 × 10−3 8.6a
31h 314 482, 508 0.16 4.2 × 10−3 4.2 × 10−3
31i 315 508 0.09 4.2 × 10−3 1.7 × 10−3
31j ≈385 ≈520 0.07 1.7 × 10−3 5.7 × 10−3
32a 464 496, 529, 570 0.07b
0.33c
32b 510 521, 555 0.35 2.4 × 10−3 16.0
32c 508 522, 556 0.35 2.3 × 10−3 19.2
33a 415 441, 466, 500 0.19
33b 414 437, 466, 500 0.21
33c 416 441, 466, 500 0.08

aAccording to reference paper ; bin THF; cin DMSO.

In 2025, Gryko’s group synthesized a series of heterohelicenes 34ac, featuring a 1,4-dihydropyrrolo[3,2-b]pyrrole (DHPP) core (Table 10). The compounds exhibit similar absorption and emission profiles. However, compound 34c stands out due to its pronounced solvatofluorochromism (λem = 546 nm, ΦF = 0.42 in DMSO). Among the series, compound 34b exhibits the highest |glum| of 7.22 × 10−3, while compound 34c shows the greatest BCPL as 29.3 M−1 cm−1. These studies underscore the importance of regioisomerism and molecular core design in optimizing the chiroptical and emissive properties of heteroatom-rich nanographenes, advancing their potential in next-generation optoelectronic and chiral photonic devices.

Table 10: Structures and optical properties of 33a,b and 34ac.

[Graphic 10]
compound λabs(max) [nm] λem [nm] ФF |gabs| |glum| BCPL [M−1 cm−1]
34a 438 460, 481 0.270 1.33 × 10−3 2.0
34b 446 463, 488 0.045 6.11 × 10−3 4.3
34c 456 483, 505 0.324 3.25 × 10−3 29.3

B,N-containing helicenes

Enhancing charge transfer between electron-donating and electron-accepting units, as well as extending π-conjugated frameworks, are widely employed strategies for achieving longer-wavelength emission in optoelectronic materials. Inspired by the electronic configuration of borazine, boron has emerged as a valuable electron-accepting counterpart to electron-donating nitrogen in conjugated systems, enabling the design of donor–acceptor helicenes with tunable photophysical properties.

In 2020, Ema and co-workers developed a series of chiral carbazole-based BODIPY analogues 35af, derived from helical carbazole-based BF2 dyes (Table 11). These analogues exhibit red-shifted emission and enhanced CPL compared to their carbazole-based helicene precursors. At λabs (≈500 nm), the compounds display |gabs| values ranging from 1.1 × 10−3 to 3.1 × 10−3, ФF values of 20–36%, and |glum| values between 7.0 × 10−4 and 1.9 × 10−3. In a subsequent study, Ema’s group reported an N-containing hetero[7]helicene 36a containing a boron–nitrogen coordination site . Its chiroptical properties could be modulated through the addition of tetrabutylammonium (TBA) salts, which transformed the boron center from a trigonal planar to a tetrahedral geometry, thereby enhancing the |glum| from 4.7 × 10−4 to 1.5 × 10−3 (OAc, 36c) and 1.7 × 10−3 (F/OH, 36b/36d). Treatment with Ag+ ions reversed this coordination, restoring the neutral trigonal boron center and its initial optical characteristics. These findings underscore the potential of boron–nitrogen-embedded helicene frameworks as tunable chiral luminophores with reversible CPL modulation, offering promising strategies for the development of advanced molecular optoelectronic devices.

Table 11: Structures and optical properties of 35af and 36a–d.

[Graphic 11]
compound λabs(max) [nm] λem(max) [nm] ФF |gabs| |glum|
35a 495 568 0.22 2.7 × 10−3 1.7 × 10−3
35b 508 594 0.20 3.1 × 10−3 1.3 × 10−3
35c 508 566 0.33 1.2 × 10−3 8.7 × 10−4
35d 524 592 0.21 1.1 × 10−3 7.0 × 10−4
35e (R,P) 508 576 0.30 2.3 × 10−3 1.5 × 10−3
(R,M) 509 571 0.36 1.5 × 10−3 1.2 × 10−3
35f (R,P) 530 605 0.20 1.8 × 10−3 1.2 × 10−3
(R,M) 532 602 0.26 1.5 × 10−3 8.8 × 10−4
36a 487 493 1.6 × 10−3 4.7 × 10−4
36b 502 512 3.0 × 10−3 1.7 × 10−3
36c 510 526 2.9 × 10−3 1.5 × 10−3
36d 511 520 3.2 × 10−3 1.7 × 10−3

In 2021, Hatakeyama and co-workers developed an expanded B,N-containing heterohelicene 37 via a one-step synthesis employing excess BBr3 at 180 °C in an autoclave, achieving a 44% yield (Table 12). In a 1 wt % PMMA-dispersed film, compound 37 exhibited ultra-narrowband emission (FWHM = 16 nm) at 484 nm with an 80% PLQY. OLEDs based on 37 demonstrated excellent external quantum efficiency, current efficiency, and power efficiency. Duan and co-workers reported B,N-containing double hetero[7]helicenes 38a,b, which exhibited deep-red fluorescence emission at 662 and 692 nm, respectively, with narrow emission bandwidths (full width at half maximum, FWHM = 38 nm) and exceptional PLQYs of 100% . Remarkably, they achieved maximum EQEs of 28.1% and 27.6%, representing the highest reported values for thermally activated delayed fluorescence (TADF) emitters operating above 650 nm. Shortly thereafter, Wang’s group reported a related series of B,N-containing compounds 38ac, which displayed pronounced chiroptical activity in the visible region . These compounds displayed the highest |gabs| values recorded for helicenes to date – 0.033, 0.031, and 0.026 at 502, 518, and 526 nm, respectively. They also showed near-unity ФF values of 100%, 99%, and 90%, with corresponding λem at 660, 684, and 696 nm, and |glum| values of 2 × 10−3. The calculated BCPL reached 28.5, 37.1, and 40.0 M−1 cm−1, positioning these helicenes among the most efficient red CPL emitters reported to date (Table 12).

Table 12: Structures and optical properties of 37, 38a–c, and 39.

[Graphic 12]
compound λabs(max) [nm] λem(max) [nm] ФF |gabs| |glum|
38a 627 660 1.00 3.3 × 10−2 2.0 × 10−3
38b 650 684 0.99 3.1 × 10−2 2.0 × 10−3
38c 662 696 0.90 2.6 × 10−2 2.0 × 10−3
39 590 617 0.96 1.2 × 10−2 1.4 × 10−3
film λabs(max) [nm] λem(max) [nm] ФF FWHM [nm]
37 in PMMA 477 484 0.80 16
38a in CBP 672 48
38b in CBP 698 49
39 in mCPBC 624 0.95
device λEL(max) [nm] |gEL| FWHM [nm] CIE coordinate EQEmax [%]
37 480 17 (0.09, 0.21) 22.9a
38a 664 48 (0.72, 0.28) 28.1
38b 686 49 (0.72, 0.28) 27.6
39 617 1.9 × 10−3 48 (0.67, 0.33) 36.6

aAs detected at 10 cd m−2.

However, such long-wavelength emission poses challenges for achieving optimal color purity in OLED devices. To overcome this limitation, Duan’s group subsequently introduced a covalent B–N bond into the helicene framework in 2023, affording compound 39 . This material emits at 617 nm with a FWHM of 38 nm and maintains a near-unity PLQY. Circularly polarized OLEDs (CP-OLEDs) based on 39 exhibit outstanding device performance, achieving a |gEL| of 1.91 × 10−3, a record-high EQE exceeding 36%, and operational stability with an LT95 of approximately 400 h at 10,000 cd m−2. These findings underscore the efficacy of B–N covalent integration in helicene-based frameworks for realizing high-efficiency, spectrally optimized, and robust red CP-OLED emitters.

In 2022, Yang and co-workers reported a W-shaped double hetero[5]helicene 40, incorporating boron, nitrogen, and sulfur atoms within its framework (Table 13). Compound 40 exhibits exceptional photophysical and electroluminescent performance, including a PLQY value of 100% and a |glum| value of 2.1 × 10−3. Circularly polarized organic light-emitting diodes (CP-OLEDs) based on 40 demonstrated a |gEL| of 2.2 × 10−3, a narrow emission bandwidth (FWHM = 49 nm), and a maximum external quantum efficiency (EQE) of 31.5%, placing it among the highest-performing multiple-resonance-induced thermally activated delayed fluorescence (MR-TADF) emitters to date. In 2023, the same group introduced the first deep-blue chiral MR-TADF emitters based on heterohelicene scaffolds 41ac . These compounds exhibited sharp emissions at 440–444 nm in solution and 445–449 nm in doped films, with emission bandwidths as narrow as 23 nm and PLQYs reaching up to 95%. Notably, racemic 41b and 41c displayed excellent chiroptical properties, with |glum| values ranging from 1.4 to 1.5 × 10−3 and BCPL values exceeding 22 M−1 cm−1. Compound 41c, in particular, achieved a |gEL| of 2.6 × 10−3 and a maximum luminance exceeding 10,000 cd m−2. These findings underscore the significant potential of heteroatom-integrated helicene systems as high-efficiency, CPL-active MR-TADF materials for next-generation OLED technologies, particularly in the development of deep-blue emissive devices with high color purity and device efficiency.

Table 13: Structure and optical properties of 40 and 41ac.

[Graphic 13]
compound λabs(max) [nm] λem(max) [nm] ФF |gabs| |glum|
40 483 520 0.98 2.1 × 10−3
41a 424 440 0.82
41b 422 443 0.91 1.4 × 10−3 1.4 × 10−3
41c 427 444 0.95 1.5 × 10−3 1.5 × 10−3
film λabs(max) [nm] λem(max) [nm] ФF FWHM [nm]
40 in DMIC-TRZ 525 48
41a in DOBNA-OAr 445 0.82 35
41b in DOBNA-OAr 448 0.91 28
41c in DOBNA-OAr 449 0.95 28
device λEL(max) [nm] |gEL| FWHM [nm] CIE coordinate EQEmax [%]
40 524 2.2 × 10−3 49 (0.26, 0.66) 31.5
41a 443 26 (0.15, 0.05) 23.4
41b 445 2.2 × 10−4 24 (0.15, 0.04) 27.5
41c 447 2.6 × 10−4 24 (0.15, 0.05) 29.3

In 2022, Marder and co-workers introduced various boryl substituents at both termini of a series of nitrogen-doped [5]helicenes, yielding helicenoids 42ah (Table 14). The Bpin-substituted derivatives 42ae exhibited broad emission across the 400–800 nm range, whereas their analogues 42f and 42g showed negligible emission, indicating a strong dependence of photophysical behavior on boryl-substituent identity. Compared to their parent azahelicenes, these compounds displayed significantly larger Stokes shifts, highlighting the pronounced electronic effects of boryl incorporation. Notably, when a CF3 group was introduced as a substituent on the azahelicene core, the resulting boryl-functionalized compound 42c exhibited an emission maximum at 563 nm in CH2Cl2, with a quantum yield of 15%, representing the highest emission efficiency observed among the boron-containing quasi-circulenes.

Table 14: Structure and optical properties of 42ah.a

[Graphic 14]
compound λabs(max) [nm] λem(max) [nm] ФF
42a 372 520 0.08
42b 373 522 0.08
42c 364 563 0.15
42d 372 530 0.07
42e 407 588 0.05
42f 385
42g 366
42h

aNo gabs or glum values were reported.

In 2022, Lu and co-workers developed a series of helical aza-BODIPY analogues 43ah, featuring a distinctive B–O–B bridge installed within each molecule (Table 15). These compounds display broad chiroptical responses extending from the ultraviolet to the entire visible spectrum – an uncommon characteristic among helicene-type systems. Among them, the phenyl-substituted aza[7]helicene 43f exhibits pronounced chiroptical activity, with |gabs| and |glum| values reaching 3.04 × 10−3 and 1.30 × 10−3, respectively, and a high BCPL of 11.5 M−1 cm−1 in the near-infrared region. In contrast, the corresponding aza[5]helicene analogue shows negligible chiral response, with |gabs| and |glum| values in the 10−5 range. To further enhance chiroptical performance, Lu’s group introduced edge-positioned methyl and ethyl substituents into the helical core, affording 44a and 44b . Compared with 43c, they are with significantly improved |gabs| values of 1.51 × 10−3 and 1.69 × 10−3, respectively. This study underscores the critical importance of molecular design in modulating chiroptical properties and provides valuable insights into the development of helicene-based BODIPY systems for near-infrared CPL applications. In 2024, Shimizu’s group reported azabora[6]helicenes 45a and 45b . However, their enantiomers could not be isolated due to low racemization barriers. The F- and Ph-coordinated derivatives displayed moderate PLQYs in solution (0.26 and 0.18, respectively), which dropped markedly in the solid state (0.02 and 0.04) owing to aggregation-caused quenching (ACQ).

Table 15: Structure and optical properties of 43ah, 44a,b, and 45a,b.

[Graphic 15]
compound λabs(max) [nm] λem(max) [nm] ФF |gabs| |glum|
43a 588 625 0.59 4 × 10−5 3 × 10−5
43b 623 649 0.56
43c 601 640 0.31
43d 634 668 0.12
43e 646 682 0.30 2.0 × 10−3 1.3 × 10−3
43f 677 708 0.24 3.0 × 10−3 1.3 × 10−3
43g 660 695 0.16 1.8 × 10−3 1.2 × 10−3
43h 691 719 0.10
44a 624 665 0.08 1.5 × 10−3
44b 625 665 0.07 1.7 × 10−3
45a 548 568 0.26
45b 554 574 0.18

In 2023, Yang and co-workers reported a pair of (NBN)2-containing double and quadruple helicenes 46ad (Table 16). The neutral compounds exhibited high PLQYs of 99% and 65% in solution, and 90% and 55% in PMMA-doped films, respectively, with exceptionally narrow full-width (FWHM values as 24 nm and 22 nm). Stepwise titration experiments with fluoride ions induced a change in the coordination number of the boron centers from three to four, forming corresponding anionic species. This coordination triggered red-shifted absorption and CPL responses while maintaining excellent PLQYs – 99% and 90% in solution, and 80% and 77% in PMMA-doped films, respectively.

Table 16: Structure and optical properties of 46ad.

[Graphic 16]
compound λabs(max) [nm] λem(max) [nm] ФF |gabs| |glum|
46aa 511 524 0.99
46ba 507 522 0.65 6.2 × 10−3 1.0 × 10−3
46cb 524 567 0.99 5.0 × 10−3 6.0 × 10−4
46db 518 541 0.90 6.0 × 10−3 7.0 × 10−4
film λabs(max) [nm] λem(max) [nm] ФF FWHM [nm]
46a in PMMA 0.95
46b in PMMA 0.55
46c in PMMA 0.80
46d in PMMA 0.77

aIn toluene; bin acetone.

In 2024, Wang’s group developed a B,N-embedded hetero[8]helicene 47, exhibiting narrow green emission at 531 nm (FWHM = 36 nm), a high PLQY of 93%, and outstanding CP-OLED performance (EQE = 32.0%; |gEL| = 7.74 × 10−4) (Table 17). Bin’s group introduced orthogonal spiro-structures into hetero[6]helicenes 48ac, achieving near-unity PLQYs in solution (up to 99%) and OLED external quantum efficiencies (EQEs) exceeding 31% . Chen’s group reported 49, a B,N-containing hetero[9]helicene that emits at 578 nm with a PLQY of 98% and showing excellent chiroptical properties (|glum| = 5.8 × 10−3; BCPL = 220.75 M−1 cm−1) . OLEDs incorporating compound 49 demonstrated an EQE of 35.5% and |gEL| = 6.2 × 10−3. Zhang’s group synthesized 50af, with and without installed heptagons . The heptagon-containing derivatives showed red-shifted emission, broader FWHM, lower PLQYs, and diminished BCPL values, indicating a trade-off between extended conjugation and emissive efficiency. Yin’s group introduced 1,4-BN motifs into compounds 51a and 51b, which emitted blue-green light at 474 and 465 nm, respectively, and exhibited moderate CPL activity (|glum| ≈ 5 × 10−4) . OLEDs based on compound 51a emitted at 502 nm and achieved an EQE of 3.18%. Liu’s group positioned B and N atoms on the inner rim of 52a and 52b . While 52b exhibited remarkably high |gabs| and |glum| values (6.1 × 10−2 and 2.4 × 10−2, respectively), its PLQY was relatively low (24%). Further molecular optimization led to the development of compounds 53ac, which demonstrated ultra-narrow emission bands (FWHM = 16–34 nm), high PLQYs (67–82%), and exceptional CPL brightness (BCPLs of 583, 374, and 349 M−1 cm−1, respectively), with compound 53a setting a new record for BN-containing helicene CPL brightness . These collective findings underscore the critical role of rational BN doping, π-conjugation engineering, and structural rigidity in precisely tuning the photophysical and chiroptical properties of helicene-based materials, thereby advancing the design of next-generation CPL-active optoelectronic systems with superior performance metrics.

Table 17: Structure and optical properties of 47, 48ac, 49, 50af, 51a,b, 52a,b, and 53ac.

[Graphic 17]
compound λabs(max) [nm] λem(max) [nm] ФF |gabs| |glum|
47 510 531 0.93 1.4 × 10−3 5.8 × 10−4
48a 482 503 0.91
48b 495 516 0.99
48c 493 515 0.94
49 546 578 0.98 5.6 × 10−3 5.8 × 10−3
50a 548 595 0.68 7.4 × 10−3 2.7 × 10−3
50b 545 585 0.66 8.6 × 10−3 2.5 × 10−3
50c 553 598 0.74 3.1 × 10−3 2.7 × 10−3
50d 622 675 0.11 4.7 × 10−3 2.9 × 10−3
50e 563 623 0.27
50f 595 641 0.02 6.6 × 10−3 5.0 × 10−3
51a 453 474 0.83 6.2 × 10−3 5.1 × 10−4
51b 447 465 0.54 2.5 × 10−3 4.8 × 10−4
52a 403 409 0.31 3.6 × 10−2 2.4 × 10−2
52b 423 430 0.24 6.1 × 10−2 4.8 × 10−2
53a 506 515 0.82 2.4 × 10−2 1.7 × 10−2
53b 513 529 0.67 1.1 × 10−2 1.2 × 10−2
53c 516 535 0.72 1.1 × 10−2 8.0 × 10−3
film λabs(max) [nm] λem(max) [nm] ФF FWHM [nm]
46a from CHCl3 667 0.02 48
46b from CHCl3 632 0.04 35
47 in PhCzBCz ≈545 0.92 ≈50
51a in DPEPO 472 0.32 38
51b in DPEPO 467 0.42 29
device λEL(max) [nm] |gEL| FWHM [nm] CIE coordinate EQEmax [%]
47 536 7.7 × 10−4 38 (0.32, 0.66) 31.1
48a 490 30 (0.10, 0.41) 25.2
48b 506 37 (0.15, 0.65) 29.2
48c 522 37 (0.22, 0.70) 31.0
49 580 6.2 × 10−3 48 (0.53, 0.46) 35.4
51a 502 35 (0.14, 0.55) 3.2

However, these findings also suggest that boron may not always be the optimal choice for enhancing charge-transfer properties. The delocalization of electrons between the vacant p-orbital of boron and the electron-rich π-conjugated systems can diminish both the electron-accepting capability of boron and the electron-donating efficiency of the conjugated framework. Additionally, the inherently low electronegativity of boron further limits its effectiveness as an electron acceptor, thereby restricting the achievable red-shift in emission. To overcome these limitations, alternative electron-withdrawing atoms and functional groups have been introduced into nitrogen-doped helicene frameworks to improve their photophysical performance and extend emission into the longer wavelength region.

X,N-containing helicenes (X = O, S or Se)

Imide functional groups are well recognized for their strong electron-accepting character, making them valuable moieties in the design of optoelectronic materials. When incorporated into π-conjugated frameworks, imide groups can significantly modulate electronic structures and enhance properties such as fluorescence efficiency, charge transport, and chiroptical responses. In this section, we begin by summarizing representative imide-functionalized helicenes, highlighting their structural features and photophysical performances. In 2020, Ravat’s group introduced a novel class of helically chiral diimide molecules 54ac, which integrate the favorable characteristics of arylene diimides within the chiral architecture of [n]helicenes . These compounds exhibit varying PLQYs of 0.22, 0.02, and 0.12 for 54a, 54b, and 54c, respectively, and notably retain fluorescence in the solid state. The |gabs| in the visible region increase systematically with helical length, reaching values as high as ≈10−2 for compounds 54b and 54c – among the highest reported to date – highlighting their strong potential in chiral optoelectronic applications (Table 18). In 2023, the same group reported a stable push–pull [7]helicene diimide (compound 55) that exhibited notable chiroptical performance, with |gabs| and |glum| values of 1.12 × 10−2 and 5.0 × 10−3, respectively, in toluene . Furthermore, compound 55 demonstrated solvent-dependent fluorescence and CPL behavior across the visible spectrum, with both emission intensity and chiroptical properties varying in response to solvent polarity. Concurrently, Würthner’s group developed two naphthalimide-annulated [n]helicenes, compounds 56a and 56b (n = 5, 6), via a concise two-step synthetic route that afforded excellent yields and notable photophysical properties . Both helicenes display high ΦF as 73% for 56a and 69% for 56b. Notably, compound 56b exhibits markedly enhanced |gabs| and |glum| values of 2.1 × 10−3 and 2.3 × 10−3, approximately 4.5-fold greater than that of compound 56a. Its red CPL emission at 615 nm and high BCPL of 66.5 M−1 cm−1 underscore its potential for advanced chiral photonic applications.

Table 18: Structures and optical properties of 54ac, 55 and 56a,b.

[Graphic 18]
compound λabs(max) [nm] λem(max) [nm] ФF |gabs| |glum| BCPL [M−1 cm−1]
54a 417, 442 471, 499 0.22a
0.17b
7 × 10−3
54b 395 470, 498 0.02a
0.02b
1.75 ×10−2
54c 452 508 0.12a
0.06b
1.22 × 10−2
55c 408 532 0.26 8.6 × 10−3 4.2 × 10−3 7.8
56a 629 655 0.73 4.5 × 10−4 5.0 × 10−4 22.0
56b 588 613 0.69 2.1 × 10−3 2.3 × 10−3 66.5
device λEL(max) [nm] |gEL| FWHM [nm] CIE coordinate EQEmax [%]
56b 618 50 2.3

aAs detected in solution; bas detected in the solid state; call detected in DCM.

Heteroatom engineering in double helicenes has emerged as a powerful strategy for tuning chiroptical properties and excited-state dynamics. In 2021, Sakamaki’s group synthesized a novel double N,O-hetero[5]helicene (compound 57b) by coupling two 12H-benzo[b]phenoxazine (BPO) units and systematically compared it to its N,N-analogue (compound 57a) derived from 13H-dibenzo[b,i]phenoxazine (DBPO) scaffolds (Table 19). Compound 57b was obtained in significantly higher yield and, like compound 57a, exhibited electron-rich character and compact molecular packing, both favorable for p-type transistor performance. Importantly, both helicenes displayed strong CPL in CH2Cl2, with |glum| values exceeding 10−2. Intriguingly, the CPL signals of the two compounds exhibited opposite signs, underscoring the sensitivity of chiral excited-state properties to heteroatom substitution within the helicene framework. Extending this design principle, the group reported a double N,S-hetero[5]helicene 58 constructed from two benzo[b]phenothiazine units in 2023 . Compared to the N,O-analogue 57b, this new compound showed more intense phosphorescence and an extended emission lifetime in dilute solution. Notably, it demonstrated room-temperature dual-emission CPL originating from both prompt fluorescence and long-lived phosphorescence, a rare feature in helicene systems. In a subsequent study, the same group reported a bis(N,Se)-hetero[4]helicene 59b and systematically compared its structural and dynamic properties with those of its sulfur analogue 59a . Despite their close structural resemblance, the longer C–Se bond in 59b led to a markedly higher racemization barrier (145.7 vs 112.8 kJ/mol), thereby illustrating how subtle atomic substitutions can significantly influence the conformational stability of helical molecules (Table 19). These studies illustrate how precise heteroatom modulation enables fine control over CPL directionality and emission lifetimes, offering promising avenues for the development of multifunctional chiral optoelectronic materials – particularly those capable of simultaneous fluorescence and phosphorescence-based CPL.

Table 19: Structures and optical properties of 57a,b, 58, and 59a,b.

[Graphic 19]
compound λabs(max) [nm] λem(max) [nm] ФF |gabs| |glum|
57a ≈410 569 0.038 1.7 × 10−2 2.3 × 10−2
57b ≈380 587 0.035 1.3 × 10−2 1.3 × 10−2
58 ≈390 547 0.003
0.30a
2.0 × 10−2 1.7 × 10−2 b
59a 380
59b 380

aPhosphorescence quantum yield ФP; bdoped in β-estradiol matrix.

Recently, thiadiazole-fused helicenes have gradually come into our view. In 2023, Hirose’s group synthesized a series of tetraazadithia[n]helicenes – 60a, 60b, and 60c – featuring 2,1,3-thiadiazole termini (Table 20). Among them, compound 60c exhibited pronounced CPL activity in toluene (|glum| = 0.04, ΦF = 3%), demonstrating the efficacy of terminal heterocycle incorporation for boosting chiroptical performance. In 2024, Babu and co-workers developed two π-extended hetero[6]helicenes – 61a and 61b – incorporating thiadiazole and selenadiazole moieties, respectively . Substitution of sulfur with selenium enhanced intermolecular interactions and led to a notable reduction in the optical bandgap, highlighting the effectiveness of heteroatom modulation in tuning the electronic and photophysical properties of chiral nanographenes. These studies exemplify how strategic structural and electronic design – through π-extension, end-group heteroatom engineering, and atom-specific substitutions – enables precise tuning of chiroptical and photophysical properties in helicene-based materials, advancing their applicability in next-generation optoelectronic devices.

Table 20: Structures and optical properties of 60ac and 61a,b.

[Graphic 20]
compound λabs(max) [nm] λem(max) [nm] ФF |gabs| |glum| BCPL [M−1 cm−1]
60a 391 398 0.005
60b 431 450 0.008 1.5 × 10−2 1.0 × 10−2 2
60c 445 483 0.027 3.7 × 10−2 4.0 × 10−2 15
61a 340 536 0.0735
61b 349 556 0.009

In 2020, Pittelkow’s group developed a unique synthetic strategy that converts a non-planar hetero[7]helicene into a planar hetero[8]circulene featuring an antiaromatic cyclooctatetraene (COT) core (62af) (Table 21). Through controlled oxidation of the thiophene units to sulfones, they achieved a systematic red-shift in both absorption and emission spectra. Remarkably, the emission of these derivatives spans nearly the entire visible spectrum. These studies provide innovative molecular design strategies for constructing helically twisted or planarized chiral π-conjugated systems with tunable optical properties, thereby paving the way for the development of multifunctional materials in advanced photonic and electronic technologies.

Table 21: Structure and optical properties of 62af.

[Graphic 21]
compound λabs(max) [nm] λem(max) [nm] ФF |gabs| |glum|
62a 388 429 0.08
62b 419 484 0.25
62c 431 518 0.14
62d 476 574 0.13
62e 414 436 0.06
62f 473 485 0.12

In 2021, Viglianisi’s group synthesized a series of thia-bridged triarylamine[4]helicene-functionalized polynorbornenes 63ac via ring-opening metathesis polymerization (ROMP), introducing helicene chirality into polymer backbones with tunable electrochromic behavior . These polymers exhibit reversible pH-responsive color changes. For instance, 63a transitions from pale yellow to deep blue in the solid state upon exposure to TFA, while 63b and 63c in CH2Cl2 exhibit new absorption bands at 570 and 575 nm, respectively – reversibly decolorized upon triethylamine treatment (Table 22). This work demonstrates the potential of helicene-containing polymers as stimuli-responsive chiral electrochromic materials. In the same year, You’s group developed a transition-metal-catalyzed C–H/C–H-type regioselective C3-arylation of benzothiophenes using molecular oxygen as the oxidant . This strategy afforded the TADF-active compound 64a, which exhibits efficient blue emission and excellent OLED performance with a maximum EQE of 25.4%. This example highlights the utility of helicene-related heteroaromatic frameworks in the design of high-efficiency emissive materials. Also in 2021, Ema’s group reported a concise Scholl-type cyclodehydrogenation strategy for synthesizing azahelicenes and diaza[8]circulenes 65ad (Table 22). These molecules exhibited distinct Cotton effects and CPL, with |glum| reaching up to 1.6 × 10−3. This approach offers a generalizable route to structurally diverse chiral polycyclic aromatic hydrocarbons (PAHs) with strong chiroptical responses. Concurrently, Tanaka’s group achieved the enantioselective synthesis of aza[6]- and aza[7]helicene-like molecules via Rh(I)/chiral bisphosphine-catalyzed [2 + 2 + 2] cycloaddition . The resulting S-shaped double aza[6]helicene-like compound 66 displayed high enantiomeric excess (up to 89% ee), pronounced chiroptical activity (|gabs| = 0.0054–0.0056), and substantial ΦF of 0.21–0.32 under both neutral and acidic conditions. This work exemplifies the power of transition-metal catalysis for constructing enantioenriched helicenes with tunable photophysical properties. These contributions from 2021 underscore the synthetic versatility and functional diversity of helicene-based systems, spanning electrochromism, thermally activated delayed fluorescence, and circularly polarized luminescence. Such structural innovations provide valuable frameworks for the development of next-generation chiral optoelectronic materials.

Table 22: Structures and optical properties of 63ac, 64a,b, 65ad, and 66.

[Graphic 22]
compound λabs(max) [nm] λem(max) [nm] ФF |gabs| |glum|
63a
63b 570
63c 575
64a 376 456
64b 360 456
65a 401 420, 441 0.30 9.2 × 10−4 7.2 × 10−4
65b 414 432, 457 0.08 1.6 × 10−3 1.1 × 10−3
65c 440 493 0.10 7.3 × 10−4 2.6 × 10−4
65d 420 554 0.02
66 388, 431 489 0.21 5.59 × 10−3 1.42 × 10−3
66 (+TFA) 290, 389, 439 555 0.32 4.98 × 10−3 1.38 × 10−3
device λEL(max) [nm] |gEL| FWHM [nm] CIE coordinate EQEmax [%]
64a 474 (0.15, 0.23) 25.4

In 2022, Furuta’s group developed a one-pot synthetic protocol to access (NH)-phenanthridinone derivatives and chiral amide-functionalized [7]helicene-like molecules 67a,b from biaryl dicarboxylic acids, employing a Curtius rearrangement followed by basic hydrolysis (Table 23). Notably, when chalcogen-containing substrates were used, the process afforded phosphorus ester derivatives of aza[5]helicenes. The chiral nature of the products was confirmed by optical rotation and CD measurements. In parallel, Soni’s group established an efficient three-step synthesis of coumarin-containing hetero[5]- and [6]helicene-like structures 68ag in high yields . These compounds display diverse photophysical behaviors: compound 68d emits yellow fluorescence in both solution and solid state, exhibiting solvatofluorochromism due to a twisted intramolecular charge transfer (TICT) mechanism, while compound 68e emits blue light (ΦF = 0.37) and demonstrates pronounced AIE in the solid state. Concurrently, Jiang’s group reported 69b, the first hetero[4]helicene-type molecule exhibiting both CPL and TADF . This compound displays a high ΦF of 0.51 and a |glum| of 1.2 × 10−3. OLED devices fabricated using 69b emit sky-blue light with a peak EQE of 10.6% and |gEL| values up to 1.6 × 10−3. Collectively, these studies demonstrate the versatility of helicene-inspired architectures for constructing multifunctional chiral optoelectronic materials, highlighting their growing relevance in next-generation circularly polarized OLED technologies.

Table 23: Structures and optical properties of 67a,b, 68ag, and 69a,b.

[Graphic 23]
compound λabs(max) [nm] λem(max) [nm] ФF |gabs| |glum|
67a
67b
68a 295 411 0.08
68b 309 422 0.10
68c 328 439 0.03
68d 394 514 0.22
68e 320 423 0.37
68f 318 389 0.01
68g 317 411 0.04
69a 397 431
69b 400 446 0.51 1.2 × 10−3
device λEL(max) [nm] |gEL| FWHM [nm] CIE coordinate EQEmax [%]
69b 488 1.6 ×10−3 72 (0.17, 0.34) 10.6

Takizawa and co-workers have pioneered electrochemical strategies for synthesizing structurally diverse hetero[7]helicenes with tunable chiroptical properties and excellent configurational stability. In 2022, they introduced two electrochemical routes to construct aza-oxa-dehydro[7]helicenes, yielding helicenes with high racemization barriers and notable chiral stability . The quasicirculenes 70a and 70b demonstrated strong blue CPL activity, with |glum| values of 2.5 × 10−3 at 433 nm and 2.4 × 10−3 at 418 nm, respectively (Table 24). Building on this, the team achieved the enantioselective synthesis of heterodehydrospiroenes on a gram scale using chiral vanadium(V) complexes – marking a significant advancement in asymmetric electrochemical catalysis. In a complementary study that same year, they reported a two-step electrochemical synthesis of a double aza-oxa[7]helicene via oxidative coupling followed by dehydrative cyclization . The resulting meso-isomer (P,M)-71 emerged as the major product, exhibiting dual emission bands at 415 and 440 nm and solvent-independent absorption at 407 nm. Expanding the structural diversity, the group developed a two-pot synthesis of unsymmetrical hetero[7]helicenes 72ag in 2023 , employing p-benzoquinone and N-aryl-2-naphthylamines through acid-promoted cyclization followed by electrochemical domino reactions. This method produced six compounds with yields ranging from 33–45%, all featuring extended π-conjugation and distinct photophysical characteristics. Furthermore, they established a mild electrochemical protocol for synthesizing oxaza[7]helicenes incorporating pyrrole and furan units . This method afforded products in 50–86% yield with Faradaic efficiencies up to 77%. Among them, derivative 73 exhibited CPL activity (|glum| = 3.0 × 10−4), showcasing the ability to modulate chiroptical responses via heteroatom integration. These studies underscore the versatility of electrochemical synthesis in enabling precise structural modulation of heterohelicenes, facilitating access to high-performance chiral optoelectronic materials.

Table 24: Structures and optical properties of 70a,b, 71, 72ag, and 73.

[Graphic 24]
compound λabs(max) [nm] λem(max) [nm] ФF |gabs| |glum|
70a 402 433 0.25 2.5 × 10−3
70b 418 0.16 2.4 × 10−3
71 407 415, 440
72a 406 439
72b 403 440 0.065
72c 402 440
72d 413 450
72e 401 440
72g 405 440
73 3.0 × 10−4

In 2023, Zhang’s group introduced a new class of helically chiral double hetero[4]helicenes 74a and 74b exhibiting CP-TADF, constructed on a distinct donor–acceptor core architecture (Table 25). These compounds demonstrate excellent configurational stability and robust CPL signals both in solution and in solid-state films, with a |glum| of 3.1 × 10−3. Corresponding CP-OLEDs based on compound 74a achieved outstanding device performance, reaching a maximum EQE of 20.03% and a |gEL| of 2.9 × 10−3 – underscoring their considerable potential for advanced chiral optoelectronic applications. Building upon this framework, in 2024, the same group developed a novel cove-region bridging strategy to construct double hetero[4]helicenes with enhanced structural rigidity and persistent chirality . By selectively modifying the bay regions of the SPZ (spiro[fluorene-9,9'-xanthene]) scaffold, they successfully converted initially non-emissive helicenes into efficient TADF luminophores with tunable emission wavelengths ranging from sky-blue to deep red. Particularly, the enantiomeric forms of the 75b derivatives emerged as rare examples of red-emissive CPL materials. This innovative design approach offers a versatile and modular platform for engineering chiral multi-helicene systems with customizable optoelectronic properties, paving the way for their deployment in next-generation CPL-active materials and high-performance CP-OLED devices.

Table 25: Structures and optical properties of 74a,b and 75ac.

[Graphic 25]
compound λabs(max) [nm] λem(max) [nm] ФF |gabs| |glum|
74a 406 493 0.13/0.67a 3.1 × 10−3,a
74b 357 450 0.07/0.22a
75a 612
75b 495 656 0.02 2.7 × 10−3
75c 436 480 0.09 2.5 × 10−2
device λEL(max) [nm] |gEL| FWHM [nm] CIE coordinate EQEmax [%]
(M,M)-74a 500 2.9 ×10−3 82 (0.24, 0.50) 20.03
rac-74a 500 81 (0.24, 0.49) 20.00

aDetected as 20 wt % doped films with the mCBP host.

In 2024, Jančařík and co-workers introduced an intramolecular radical cyclization strategy to synthesize highly luminescent tetraceno[6]helicenone and its aza analogue 76 (Table 26). The incorporation of a carbonyl group into the helicene backbone substantially enhanced fluorescence quantum yields and red-shifted the emission into the visible region. The aza analogue demonstrated promising performance in OLEDs, confirming its potential for optoelectronic applications. Concurrently, Shirinian’s group synthesized a series of nitrogen-functionalized quinoline (NFQ)-based aza-oxa[5]helicenes 77af exhibiting excellent UV stability and solvent-dependent fluorescence . Protonation significantly enhanced their emission intensity, and the presence of nitrogen facilitated further structural derivatization. In the same year, Alcarazo’s group reported an enantioselective gold-catalyzed synthesis of compound 78, achieving a high enantiomeric excess . They further investigated various post-synthetic modification strategies, demonstrating their potential for application in chiral photonic materials. Collectively, these advances underscore the power of structural tailoring, heteroatom incorporation, and enantioselective strategies in finely tuning the photophysical and chiroptical properties of helicenes, providing a versatile foundation for the development of high-performance chiral optoelectronic materials.

Table 26: Structures and optical properties of 76, 77af, and 78.a

[Graphic 26]
compound λabs(max) [nm] λem(max) [nm] ФF
76 483 561 0.43
77a in CHCl3 352 379, 399 0.39
77b in CHCl3 359 379, 392 0.04
77c in CHCl3 360 397 0.08
77d in CHCl3 362 390, 403 0.09
77a in heptane 347 388 0.21
77e in heptane 348 391 0.20
77f in heptane 348, 358 383 0.19
77a in toluene 352 394, 421 0.56
77e in toluene 353 380, 400 0.44
77f in toluene 353 388 0.28
77a in acetonitrile 348 375 0.48
77e in acetonitrile 348 383 0.48
77f in acetonitrile 349 391 0.42
77a in methanol 351 383 0.48
77e in methanol 349 391 0.47
77f in methanol 352 396 0.27
device λEL(max) [nm] |gEL| FWHM [nm] CIE coordinate EQEmax [%]
76 580 103 0.15
76:MADN 95:5 550 93 0.7

aNo gabs or glum values were reported, no optical characterization for 78.

Conclusion

Nitrogen-doped helicenes and their heteroatom co-doped analogues constitute a rapidly advancing class of chiral π-conjugated materials, distinguished by exceptional structural tunability, photophysical diversity, and chiroptical functionality. The integration of nitrogen – and its synergistic pairing with heteroatoms such as boron, oxygen, sulfur, and selenium – has significantly expanded the molecular design space, enabling precise control over redox behavior, emission wavelength, CPL, and responsiveness to thermal or redox stimuli. These heteroatom modifications have led to remarkable breakthroughs, including near-unity PLQYs, ultranarrow emission bands, |glum| values exceeding 10−3, and unprecedented BCPL, particularly in the visible to near-infrared (NIR) spectral regions.

Recent advances in synthetic methodology – including electrochemical, Scholl-type, and enantioselective catalytic strategies – have further enabled access to structurally complex helicene topologies with enhanced configurational stability and integrated multifunctionality. These developments have facilitated a growing range of applications in CP-OLEDs, molecular sensing, chiral switches, and photonic devices. Moving forward, key challenges remain, such as mitigating spectral broadening in red/NIR emission, enhancing the chemical and photostability of electron-deficient helicenes, and developing sustainable, scalable synthetic approaches. The integration of computational design with multifunctional molecular engineering is expected to accelerate the deployment of helicene-based materials in next-generation technologies spanning chiral optoelectronics, bioimaging, spintronics, and quantum information science.

Funding

Prof. Dr. H.-Y. Gong acknowledges the financial support provided by the National Natural Science Foundation of China (Grant No. 92156009). Nai-Te Yao appreciates for the financial support from the Interdisciplinary Research Foundation for Doctoral Candidates of Beijing Normal University (Grant No. BNUXKJC2407).

Author Contributions

Meng Qiu: resources; writing – original draft. Jing Du: writing – original draft. Nai-Te Yao: funding acquisition; writing – original draft. Xin-Yue Wang: writing – original draft. Han-Yuan Gong: conceptualization; funding acquisition; writing – review & editing.

Data Availability Statement

Data sharing is not applicable as no new data was generated or analyzed in this study.

References

  1. Chen, J.; Captain, B.; Takenaka, N. Org. Lett. 2011, 13, 1654–1657. doi:10.1021/ol200102c
    Return to citation in text: [1]
  2. Peng, Z.; Takenaka, N. Chem. Rec. 2013, 13, 28–42. doi:10.1002/tcr.201200010
    Return to citation in text: [1]
  3. Zhang, G.; Zhang, J.; Tao, Y.; Gan, F.; Lin, G.; Liang, J.; Shen, C.; Zhang, Y.; Qiu, H. Nat. Commun. 2024, 15, 5469. doi:10.1038/s41467-024-49865-y
    Return to citation in text: [1]
  4. Isla, H.; Saleh, N.; Ou-Yang, J.-K.; Dhbaibi, K.; Jean, M.; Dziurka, M.; Favereau, L.; Vanthuyne, N.; Toupet, L.; Jamoussi, B.; Srebro-Hooper, M.; Crassous, J. J. Org. Chem. 2019, 84, 5383–5393. doi:10.1021/acs.joc.9b00389
    Return to citation in text: [1]
  5. Meng, D.; Fu, H.; Xiao, C.; Meng, X.; Winands, T.; Ma, W.; Wei, W.; Fan, B.; Huo, L.; Doltsinis, N. L.; Li, Y.; Sun, Y.; Wang, Z. J. Am. Chem. Soc. 2016, 138, 10184–10190. doi:10.1021/jacs.6b04368
    Return to citation in text: [1]
  6. Jakubec, M.; Storch, J. J. Org. Chem. 2020, 85, 13415–13428. doi:10.1021/acs.joc.0c01837
    Return to citation in text: [1]
  7. Wang, X.-Y.; Yao, X.; Narita, A.; Müllen, K. Acc. Chem. Res. 2019, 52, 2491–2505. doi:10.1021/acs.accounts.9b00322
    Return to citation in text: [1]
  8. Feng, Y.; Xu, Y.; Qu, C.; Wang, Q.; Ye, K.; Liu, Y.; Wang, Y. Adv. Mater. (Weinheim, Ger.) 2024, 36, 2403061. doi:10.1002/adma.202403061
    Return to citation in text: [1]
  9. Zhu, D.; Jiang, W.; Ma, Z.; Feng, J.; Zhan, X.; Lu, C.; Liu, J.; Liu, J.; Hu, Y.; Wang, D.; Zhao, Y. S.; Wang, J.; Wang, Z.; Jiang, L. Nat. Commun. 2022, 13, 3454. doi:10.1038/s41467-022-31186-7
    Return to citation in text: [1]
  10. Kundu, D.; Rio, N. D.; Crassous, J. Acc. Chem. Res. 2024, 57, 2941–2952. doi:10.1021/acs.accounts.4c00275
    Return to citation in text: [1]
  11. Dhbaibi, K.; Favereau, L.; Crassous, J. Chem. Rev. 2019, 119, 8846–8953. doi:10.1021/acs.chemrev.9b00033
    Return to citation in text: [1]
  12. Nowak-Król, A.; Geppert, P. T.; Naveen, K. R. Chem. Sci. 2024, 15, 7408–7440. doi:10.1039/d4sc01083c
    Return to citation in text: [1]
  13. Maeda, C.; Ema, T. Chem. Commun. 2025, 61, 4757–4773. doi:10.1039/d4cc06307d
    Return to citation in text: [1]
  14. Reger, D.; Haines, P.; Amsharov, K. Y.; Schmidt, J. A.; Ullrich, T.; Bönisch, S.; Hampel, F.; Görling, A.; Nelson, J.; Jelfs, K. E.; Guldi, D. M.; Jux, N. Angew. Chem., Int. Ed. 2021, 60, 18073–18081. doi:10.1002/anie.202103253
    Return to citation in text: [1]
  15. Qiu, S.; Valdivia, A. C.; Zhuang, W.; Hung, F.-F.; Che, C.-M.; Casado, J.; Liu, J. J. Am. Chem. Soc. 2024, 146, 16161–16172. doi:10.1021/jacs.4c03815
    Return to citation in text: [1]
  16. Wang, X.-Y.; Bai, J.; Shen, Y.-J.; Li, Z.-A.; Gong, H.-Y. Angew. Chem., Int. Ed. 2025, 64, e202417745. doi:10.1002/anie.202417745
    Return to citation in text: [1]
  17. Kumar, V.; Venugopal, G.; Jadhav, A. B.; Dongre, S. D.; Gonnade, R.; Kumar, J.; Ruer, P. C.; Hupp, B.; Steffen, A.; Babu, S. S. Angew. Chem., Int. Ed. 2025, 64, e202422125. doi:10.1002/anie.202422125
    Return to citation in text: [1]
  18. Yanagi, T.; Tanaka, T.; Yorimitsu, H. Chem. Sci. 2021, 12, 2784–2793. doi:10.1039/d1sc00044f
    Return to citation in text: [1]
  19. Taniguchi, T.; Nishii, Y.; Mori, T.; Nakayama, K.-i.; Miura, M. Chem. – Eur. J. 2021, 27, 7356–7361. doi:10.1002/chem.202100327
    Return to citation in text: [1]
  20. Yen-Pon, E.; Buttard, F.; Frédéric, L.; Thuéry, P.; Taran, F.; Pieters, G.; Champagne, P. A.; Audisio, D. JACS Au 2021, 1, 807–818. doi:10.1021/jacsau.1c00084
    Return to citation in text: [1]
  21. Kos, M.; Rodríguez, R.; Storch, J.; Sýkora, J.; Caytan, E.; Cordier, M.; Císařová, I.; Vanthuyne, N.; Williams, J. A. G.; Žádný, J.; Církva, V.; Crassous, J. Inorg. Chem. 2021, 60, 11838–11851. doi:10.1021/acs.inorgchem.1c01379
    Return to citation in text: [1]
  22. Yang, S.-Y.; Zou, S.-N.; Kong, F.-C.; Liao, X.-J.; Qu, Y.-K.; Feng, Z.-Q.; Zheng, Y.-X.; Jiang, Z.-Q.; Liao, L.-S. Chem. Commun. 2021, 57, 11041–11044. doi:10.1039/d1cc04405b
    Return to citation in text: [1]
  23. Petdum, A.; Kaewnok, N.; Panchan, W.; Sahasithiwat, S.; Sooksimuang, T.; Sirirak, J.; Chaiyaveij, D.; Wanichacheva, N. J. Mol. Struct. 2021, 1245, 131250. doi:10.1016/j.molstruc.2021.131250
    Return to citation in text: [1]
  24. Maeda, C.; Nomoto, S.; Akiyama, K.; Tanaka, T.; Ema, T. Chem. – Eur. J. 2021, 27, 15699–15705. doi:10.1002/chem.202102269
    Return to citation in text: [1] [2]
  25. Maeda, C.; Yasutomo, I.; Ema, T. Angew. Chem., Int. Ed. 2024, 63, e202404149. doi:10.1002/anie.202404149
    Return to citation in text: [1]
  26. Wu, Y.-F.; Ying, S.-W.; Su, L.-Y.; Du, J.-J.; Zhang, L.; Chen, B.-W.; Tian, H.-R.; Xu, H.; Zhang, M.-L.; Yan, X.; Zhang, Q.; Xie, S.-Y.; Zheng, L.-S. J. Am. Chem. Soc. 2022, 144, 10736–10742. doi:10.1021/jacs.2c00794
    Return to citation in text: [1]
  27. Váňa, L.; Jakubec, M.; Sýkora, J.; Císařová, I.; Žádný, J.; Storch, J.; Církva, V. J. Org. Chem. 2022, 87, 7150–7166. doi:10.1021/acs.joc.2c00375
    Return to citation in text: [1]
  28. Gong, X.; Li, C.; Cai, Z.; Wan, X.; Qian, H.; Yang, G. J. Org. Chem. 2022, 87, 8406–8412. doi:10.1021/acs.joc.2c00371
    Return to citation in text: [1]
  29. Hong, J.; Xiao, X.; Liu, H.; Dmitrieva, E.; Popov, A. A.; Yu, Z.; Li, M.-D.; Ohto, T.; Liu, J.; Narita, A.; Liu, P.; Tada, H.; Cao, X.-Y.; Wang, X.-Y.; Zou, Y.; Müllen, K.; Hu, Y. Chem. – Eur. J. 2022, 28, e202202243. doi:10.1002/chem.202202243
    Return to citation in text: [1]
  30. Yu, Z.; Shi, G.; Wang, K.-P.; Xu, L.-Z.; Chen, S.; Hu, Z.-Q. Tetrahedron 2023, 130, 133178. doi:10.1016/j.tet.2022.133178
    Return to citation in text: [1]
  31. Ausekle, E.; Ehlers, P.; Villinger, A.; Langer, P. Chem. – Eur. J. 2024, 30, e202303225. doi:10.1002/chem.202303225
    Return to citation in text: [1]
  32. Liu, W.; Qin, T.; Xie, W.; Zhou, J.; Ye, Z.; Yang, X. Angew. Chem., Int. Ed. 2023, 62, e202303430. doi:10.1002/anie.202303430
    Return to citation in text: [1]
  33. Qiua, S.; Liu, J. Org. Mater. 2023, 5, 202–206. doi:10.1055/a-2172-1216
    Return to citation in text: [1]
  34. Nishimura, Y.; Harimoto, T.; Suzuki, T.; Ishigaki, Y. Chem. – Eur. J. 2023, 29, e202301759. doi:10.1002/chem.202301759
    Return to citation in text: [1]
  35. Li, C.; Zhang, C.; Li, P.; Jia, Y.; Duan, J.; Liu, M.; Zhang, N.; Chen, P. Angew. Chem., Int. Ed. 2023, 62, e202302019. doi:10.1002/anie.202302019
    Return to citation in text: [1]
  36. Shi, Y.; Li, C.; Di, J.; Xue, Y.; Jia, Y.; Duan, J.; Hu, X.; Tian, Y.; Li, Y.; Sun, C.; Zhang, N.; Xiong, Y.; Jin, T.; Chen, P. Angew. Chem., Int. Ed. 2024, 63, e202402800. doi:10.1002/anie.202402800
    Return to citation in text: [1]
  37. Gan, F.; Zhang, G.; Liang, J.; Shen, C.; Qiu, H. Angew. Chem., Int. Ed. 2024, 63, e202320076. doi:10.1002/anie.202320076
    Return to citation in text: [1]
  38. Gross, M.; Zhang, F.; Arnold, M. E.; Ravat, P.; Kuehne, A. J. C. Adv. Opt. Mater. 2024, 12, 2301707. doi:10.1002/adom.202301707
    Return to citation in text: [1]
  39. Wang, Y.; Liao, Q.; Feng, Y.; Wang, Y.; Li, Y.; Meng, Q. Chem. Commun. 2024, 60, 8292–8295. doi:10.1039/d4cc02747g
    Return to citation in text: [1]
  40. Xia, Y.; Jiang, L.; Yang, Q.; Yu, X.; Chen, F. Chin. J. Org. Chem. 2024, 44, 2841–2846. doi:10.6023/cjoc202405006
    Return to citation in text: [1]
  41. Yadagiri, B.; Kumar, V.; Singh, S. P. Mater. Adv. 2024, 5, 2328–2334. doi:10.1039/d3ma01045g
    Return to citation in text: [1]
  42. Huo, G.-F.; Xu, W.-T.; Han, Y.; Zhu, J.; Hou, X.; Fan, W.; Ni, Y.; Wu, S.; Yang, H.-B.; Wu, J. Angew. Chem., Int. Ed. 2024, 63, e202403149. doi:10.1002/anie.202403149
    Return to citation in text: [1] [2]
  43. Borstelmann, J.; Schneider, L.; Rominger, F.; Deschler, F.; Kivala, M. Angew. Chem., Int. Ed. 2024, 63, e202405570. doi:10.1002/anie.202405570
    Return to citation in text: [1]
  44. Borstelmann, J.; Zank, S.; Krug, M.; Berger, G.; Fröhlich, N.; Glotz, G.; Gnannt, F.; Schneider, L.; Rominger, F.; Deschler, F.; Clark, T.; Gescheidt, G.; Guldi, D. M.; Kivala, M. Angew. Chem., Int. Ed. 2025, 64, e202423516. doi:10.1002/anie.202423516
    Return to citation in text: [1]
  45. Matsuo, Y.; Gon, M.; Tanaka, K.; Seki, S.; Tanaka, T. J. Am. Chem. Soc. 2024, 146, 17428–17437. doi:10.1021/jacs.4c05156
    Return to citation in text: [1]
  46. Matsuo, Y.; Gon, M.; Tanaka, K.; Seki, S.; Tanaka, T. Chem. – Asian J. 2024, 19, e202400134. doi:10.1002/asia.202400134
    Return to citation in text: [1]
  47. Matsuo, Y.; Seki, S.; Tanaka, T. Chem. Lett. 2024, 53, upae159. doi:10.1093/chemle/upae159
    Return to citation in text: [1]
  48. Kusy, D.; Górski, K.; Bertocchi, F.; Galli, M.; Vanthuyne, N.; Terenziani, F.; Gryko, D. T. Chem. – Eur. J. 2025, 31, e202404632. doi:10.1002/chem.202404632
    Return to citation in text: [1]
  49. Maeda, C.; Nagahata, K.; Shirakawa, T.; Ema, T. Angew. Chem., Int. Ed. 2020, 59, 7813–7817. doi:10.1002/anie.202001186
    Return to citation in text: [1]
  50. Maeda, C.; Michishita, S.; Yasutomo, I.; Ema, T. Angew. Chem., Int. Ed. 2025, 64, e202418546. doi:10.1002/anie.202418546
    Return to citation in text: [1]
  51. Oda, S.; Kawakami, B.; Yamasaki, Y.; Matsumoto, R.; Yoshioka, M.; Fukushima, D.; Nakatsuka, S.; Hatakeyama, T. J. Am. Chem. Soc. 2022, 144, 106–112. doi:10.1021/jacs.1c11659
    Return to citation in text: [1]
  52. Zhang, Y.; Zhang, D.; Huang, T.; Gillett, A. J.; Liu, Y.; Hu, D.; Cui, L.; Bin, Z.; Li, G.; Wei, J.; Duan, L. Angew. Chem., Int. Ed. 2021, 60, 20498–20503. doi:10.1002/anie.202107848
    Return to citation in text: [1]
  53. Li, J.-K.; Chen, X.-Y.; Guo, Y.-L.; Wang, X.-C.; Sue, A. C.-H.; Cao, X.-Y.; Wang, X.-Y. J. Am. Chem. Soc. 2021, 143, 17958–17963. doi:10.1021/jacs.1c09058
    Return to citation in text: [1]
  54. Meng, G.; Zhou, J.; Han, X.-S.; Zhao, W.; Zhang, Y.; Li, M.; Chen, C.-F.; Zhang, D.; Duan, L. Adv. Mater. (Weinheim, Ger.) 2024, 36, 2307420. doi:10.1002/adma.202307420
    Return to citation in text: [1]
  55. Yang, W.; Li, N.; Miao, J.; Zhan, L.; Gong, S.; Huang, Z.; Yang, C. CCS Chem. 2022, 4, 3463–3471. doi:10.31635/ccschem.022.202101661
    Return to citation in text: [1]
  56. Ye, Z.; Wu, H.; Xu, Y.; Hua, T.; Chen, G.; Chen, Z.; Yin, X.; Huang, M.; Xu, K.; Song, X.; Huang, Z.; Lv, X.; Miao, J.; Cao, X.; Yang, C. Adv. Mater. (Weinheim, Ger.) 2024, 36, 2308314. doi:10.1002/adma.202308314
    Return to citation in text: [1]
  57. Zhang, X.; Rauch, F.; Niedens, J.; da Silva, R. B.; Friedrich, A.; Nowak-Król, A.; Garden, S. J.; Marder, T. B. J. Am. Chem. Soc. 2022, 144, 22316–22324. doi:10.1021/jacs.2c10865
    Return to citation in text: [1]
  58. Xu, Y.; Ni, Z.; Xiao, Y.; Chen, Z.; Wang, S.; Gai, L.; Zheng, Y.-X.; Shen, Z.; Lu, H.; Guo, Z. Angew. Chem., Int. Ed. 2023, 62, e202218023. doi:10.1002/anie.202218023
    Return to citation in text: [1]
  59. Yu, C.-Y.; Xu, Y.; Bi, X.; Ni, Z.; Xiao, H.; Hu, X.; Lu, H. Tetrahedron Lett. 2023, 133, 154833. doi:10.1016/j.tetlet.2023.154833
    Return to citation in text: [1]
  60. Kage, Y.; Jiang, Y.; Minakuchi, N.; Mori, S.; Shimizu, S. Chem. Commun. 2024, 60, 3543–3546. doi:10.1039/d4cc00168k
    Return to citation in text: [1]
  61. Tan, D.; Dong, J.; Ma, T.; Feng, Q.; Wang, S.; Yang, D.-T. Angew. Chem., Int. Ed. 2023, 62, e202304711. doi:10.1002/anie.202304711
    Return to citation in text: [1]
  62. Huang, T.; Yuan, L.; Lu, X.; Qu, Y.; Qu, C.; Xu, Y.; Zheng, Y.-X.; Wang, Y. Chem. Sci. 2024, 15, 15170–15177. doi:10.1039/d4sc03854a
    Return to citation in text: [1]
  63. Cheng, H.; Lan, J.; Yang, Y.; Bin, Z. Mater. Horiz. 2024, 11, 4674–4680. doi:10.1039/d4mh00634h
    Return to citation in text: [1]
  64. Guo, W.-C.; Zhao, W.-L.; Tan, K.-K.; Li, M.; Chen, C.-F. Angew. Chem., Int. Ed. 2024, 63, e202401835. doi:10.1002/anie.202401835
    Return to citation in text: [1]
  65. Ju, Y.-Y.; Xie, L.-E.; Xing, J.-F.; Deng, Q.-S.; Chen, X.-W.; Huang, L.-X.; Nie, G.-H.; Tan, Y.-Z.; Zhang, B. Angew. Chem., Int. Ed. 2025, 64, e202414383. doi:10.1002/anie.202414383
    Return to citation in text: [1]
  66. Liu, M.; Li, C.; Liao, G.; Zhao, F.; Yao, C.; Wang, N.; Yin, X. Chem. – Eur. J. 2024, 30, e202402257. doi:10.1002/chem.202402257
    Return to citation in text: [1]
  67. Yu, Y.; Wang, C.; Hung, F.-F.; Chen, C.; Pan, D.; Che, C.-M.; Liu, J. J. Am. Chem. Soc. 2024, 146, 22600–22611. doi:10.1021/jacs.4c06997
    Return to citation in text: [1]
  68. Yu, Y.; Wang, C.; Hung, F.-F.; Jiang, L.; Che, C.-M.; Liu, J. Angew. Chem., Int. Ed. 2025, 64, e202501645. doi:10.1002/anie.202501645
    Return to citation in text: [1]
  69. Saal, F.; Zhang, F.; Holzapfel, M.; Stolte, M.; Michail, E.; Moos, M.; Schmiedel, A.; Krause, A.-M.; Lambert, C.; Würthner, F.; Ravat, P. J. Am. Chem. Soc. 2020, 142, 21298–21303. doi:10.1021/jacs.0c11053
    Return to citation in text: [1]
  70. Saal, F.; Swain, A.; Schmiedel, A.; Holzapfel, M.; Lambert, C.; Ravat, P. Chem. Commun. 2023, 59, 14005–14008. doi:10.1039/d3cc04470j
    Return to citation in text: [1]
  71. Tian, X.; Shoyama, K.; Mahlmeister, B.; Brust, F.; Stolte, M.; Würthner, F. J. Am. Chem. Soc. 2023, 145, 9886–9894. doi:10.1021/jacs.3c03441
    Return to citation in text: [1]
  72. Sakamaki, D.; Tanaka, S.; Tanaka, K.; Takino, M.; Gon, M.; Tanaka, K.; Hirose, T.; Hirobe, D.; Yamamoto, H. M.; Fujiwara, H. J. Phys. Chem. Lett. 2021, 12, 9283–9292. doi:10.1021/acs.jpclett.1c02896
    Return to citation in text: [1]
  73. Tanaka, S.; Sakamaki, D.; Haruta, N.; Sato, T.; Gon, M.; Tanaka, K.; Fujiwara, H. J. Mater. Chem. C 2023, 11, 4846–4854. doi:10.1039/d3tc00871a
    Return to citation in text: [1]
  74. Sakamaki, D.; Inoue, Y.; Shimomura, K.; Taura, D.; Yashima, E.; Seki, S. Tetrahedron Lett. 2023, 114, 154294. doi:10.1016/j.tetlet.2022.154294
    Return to citation in text: [1]
  75. Zhang, Z.; Murata, Y.; Hirose, T. Tetrahedron 2023, 142, 133514. doi:10.1016/j.tet.2023.133514
    Return to citation in text: [1]
  76. Kumar, V.; Dongre, S. D.; Venugopal, G.; Narayanan, A.; Babu, S. S. Chem. Commun. 2024, 60, 11944–11947. doi:10.1039/d4cc03707c
    Return to citation in text: [1]
  77. Lousen, B.; Pedersen, S. K.; Bols, P.; Hansen, K. H.; Pedersen, M. R.; Hammerich, O.; Bondarchuk, S.; Minaev, B.; Baryshnikov, G. V.; Ågren, H.; Pittelkow, M. Chem. – Eur. J. 2020, 26, 4935–4940. doi:10.1002/chem.201905339
    Return to citation in text: [1]
  78. Lupi, M.; Menichetti, S.; Stagnaro, P.; Utzeri, R.; Viglianisi, C. Synthesis 2021, 53, 2602–2611. doi:10.1055/s-0040-1706743
    Return to citation in text: [1]
  79. Shi, Y.; Yang, G.; Shen, B.; Yang, Y.; Yan, L.; Yang, F.; Liu, J.; Liao, X.; Yu, P.; Bin, Z.; You, J. J. Am. Chem. Soc. 2021, 143, 21066–21076. doi:10.1021/jacs.1c11277
    Return to citation in text: [1]
  80. Hanada, K.; Nogami, J.; Miyamoto, K.; Hayase, N.; Nagashima, Y.; Tanaka, Y.; Muranaka, A.; Uchiyama, M.; Tanaka, K. Chem. – Eur. J. 2021, 27, 9313–9319. doi:10.1002/chem.202005479
    Return to citation in text: [1]
  81. Murai, T.; Xing, Y.; Kurokawa, M.; Kuribayashi, T.; Nikaido, M.; Elboray, E. E.; Hamada, S.; Kobayashi, Y.; Sasamori, T.; Kawabata, T.; Furuta, T. J. Org. Chem. 2022, 87, 5510–5521. doi:10.1021/acs.joc.1c02769
    Return to citation in text: [1]
  82. Soni, R.; Soman, S. S. Asian J. Org. Chem. 2022, 11, e202100770. doi:10.1002/ajoc.202100770
    Return to citation in text: [1]
  83. Yang, S.-Y.; Tian, Q.-S.; Liao, X.-J.; Wu, Z.-G.; Shen, W.-S.; Yu, Y.-J.; Feng, Z.-Q.; Zheng, Y.-X.; Jiang, Z.-Q.; Liao, L.-S. J. Mater. Chem. C 2022, 10, 4393–4401. doi:10.1039/d1tc06125a
    Return to citation in text: [1]
  84. Khalid, M. I.; Salem, M. S. H.; Sako, M.; Kondo, M.; Sasai, H.; Takizawa, S. Commun. Chem. 2022, 5, 166. doi:10.1038/s42004-022-00780-7
    Return to citation in text: [1]
  85. Salem, M. S. H.; Sabri, A.; Khalid, M. I.; Sasai, H.; Takizawa, S. Molecules 2022, 27, 9068. doi:10.3390/molecules27249068
    Return to citation in text: [1]
  86. Salem, M. S. H.; Khalid, M. I.; Sasai, H.; Takizawa, S. Tetrahedron 2023, 133, 133266. doi:10.1016/j.tet.2023.133266
    Return to citation in text: [1]
  87. Salem, M. S. H.; Khalid, M. I.; Sako, M.; Higashida, K.; Lacroix, C.; Kondo, M.; Takishima, R.; Taniguchi, T.; Miura, M.; Vo‐Thanh, G.; Sasai, H.; Takizawa, S. Adv. Synth. Catal. 2023, 365, 373–380. doi:10.1002/adsc.202201262
    Return to citation in text: [1]
  88. Qu, C.; Zhu, Y.; Liang, L.; Ye, K.; Zhang, Y.; Zhang, H.; Zhang, Z.; Duan, L.; Wang, Y. Adv. Opt. Mater. 2023, 11, 2203030. doi:10.1002/adom.202203030
    Return to citation in text: [1]
  89. Qu, C.; Xu, Y.; Wang, Y.; Nie, Y.; Ye, K.; Zhang, H.; Zhang, Z. Angew. Chem., Int. Ed. 2024, 63, e202400661. doi:10.1002/anie.202400661
    Return to citation in text: [1]
  90. Sturm, L.; Banasiewicz, M.; Deperasinska, I.; Kozankiewicz, B.; Morawski, O.; Dechambenoit, P.; Bock, H.; Nagata, Y.; Salvagnac, L.; Séguy, I.; Šámal, M.; Jančařík, A. Chem. – Eur. J. 2024, 30, e202403482. doi:10.1002/chem.202403482
    Return to citation in text: [1]
  91. Balakhonov, R. Y.; Gaeva, E. B.; Mekeda, I. S.; Dolotov, R. A.; Metelitsa, A. V.; Shirinian, V. Z. Dyes Pigm. 2024, 225, 112032. doi:10.1016/j.dyepig.2024.112032
    Return to citation in text: [1]
  92. Fu, W.; Pelliccioli, V.; Casares-López, R.; Cuerva, J. M.; Simon, M.; Golz, C.; Alcarazo, M. CCS Chem. 2024, 6, 2439–2451. doi:10.31635/ccschem.024.202404088
    Return to citation in text: [1]
Other Beilstein-Institut Open Science Activities